Spaces:
Running
Running
import gradio as gr | |
from threading import Thread | |
import time | |
import anvil.server | |
from registration import register,get_register,func_reg | |
from library import get_file,get_files | |
anvil.server.connect('55MH4EBKM22EP4E6D5T6CVSL-VGO5X4SM6JEXGJVT') | |
register(get_file) | |
register(get_files) | |
# with gr.Blocks() as block: | |
# textbox = gr.inputs.Textbox(label='Function Register') | |
# button = gr.Button(value="Show Function Calls") | |
# button.click(get_register,inputs=None,outputs=[textbox]) | |
# block.launch() | |
import json | |
import ast | |
def my_inference_function(name): | |
# print(ast.literal_eval(name)['name']) | |
return "Input Data: " + name + ", stay tuned for ML models from this API" | |
gradio_interface = gr.Interface( | |
fn=my_inference_function, | |
inputs="text", | |
outputs="text", | |
title="REST API with Gradio and Huggingface Spaces", | |
description='''Inputs should be json of test item e.g., as a dictionary; | |
output right now is just returning the input; later label will be returned. | |
This is how to call the API from Python: | |
import requests | |
response = requests.post("https://gmshroff-gmserver.hf.space/run/predict", json={ | |
"data": [ | |
"\<put some json string here\>", | |
]}).json() | |
data = response["data"]) | |
''') | |
gradio_interface.launch() | |
# anvil.server.wait_forever() | |