#@title Import required libraries import os import torch import re from tqdm import tqdm import PIL from PIL import Image from typing import List, Optional, Tuple, Union from torchvision import transforms as tfms from diffusers import StableDiffusionPipeline, AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer # from focus_blur_utils import calculate_focus_blur_loss # from transformers.modeling_attn_mask_utils import AttentionMaskConverter class TextualInversion: def __init__(self, pretrained_model_name_or_path = "CompVis/stable-diffusion-v1-4", repo_id_embeds=["sd-concepts-library/matrix::with concept"]): #@markdown `pretrained_model_name_or_path` which Stable Diffusion checkpoint you want to use. This should match the one used for training the embeddings. self.pretrained_model_name_or_path = pretrained_model_name_or_path #@title Load your concept here #@markdown Enter the `repo_id` for a concept you like (you can find pre-learned concepts in the public [SD Concepts Library](https://huggingface.co/sd-concepts-library)) self.repo_id_embeds = [x.split("::")[0].split("/")[-1] for x in repo_id_embeds] self.prompts_suffixes = [x.split("::")[1] for x in repo_id_embeds] # Set device self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" if "mps" == self.device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1" #@title Load the Stable Diffusion pipeline # self.pipe = StableDiffusionPipeline.from_pretrained( # pretrained_model_name_or_path, # torch_dtype=torch.float16 # ).to(self.device) # Load the autoencoder model which will be used to decode the latents into image space. self.vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") # Load the tokenizer and text encoder to tokenize and encode the text. self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") self.text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") # The UNet model for generating the latents. self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") # The noise scheduler self.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) # To the GPU we go! self.vae = self.vae.to(self.device) self.text_encoder = self.text_encoder.to(self.device) self.unet = self.unet.to(self.device) # Access the token embedding layers # Token Embedding Layer self.token_emb_layer = self.text_encoder.text_model.embeddings.token_embedding # Position Embedding Layer self.position_ids = self.text_encoder.text_model.embeddings.position_ids self.position_emb_layer = self.text_encoder.text_model.embeddings.position_embedding self.conceptsEmbeddings = [] for index,repo_id in enumerate(self.repo_id_embeds): #@title Load the concept into pipeline concept_embed_lib = torch.load("sd-concepts-library/" + self.repo_id_embeds[index] +"_learned_embeds.bin") # load the concept learned embeddings print(self.repo_id_embeds[index]) print(concept_embed_lib.keys()) if self.repo_id_embeds[index] in concept_embed_lib.keys(): concept_embed = concept_embed_lib[self.repo_id_embeds[index]] # Read the embedding value using the key i.e. concept_embed_lib[''] else: first_key, concept_embed = next(iter(concept_embed_lib.items())) # Read the first key and the embedding value self.conceptsEmbeddings.append(concept_embed.to(self.device)) print(f"len(self.conceptsEmbeddings): {len(self.conceptsEmbeddings)}") def _create_4d_causal_attention_mask( input_shape: Union[torch.Size, Tuple, List], dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0, sliding_window: Optional[int] = None, ) -> Optional[torch.Tensor]: """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` Args: input_shape (`tuple(int)` or `list(int)` or `torch.Size`): The input shape should be a tuple that defines `(batch_size, query_length)`. dtype (`torch.dtype`): The torch dtype the created mask shall have. device (`int`): The torch device the created mask shall have. sliding_window (`int`, *optional*): If the model uses windowed attention, a sliding window should be passed. """ attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) key_value_length = past_key_values_length + input_shape[-1] attention_mask = attn_mask_converter.to_causal_4d( input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device ) return attention_mask def get_output_embeds(self, input_embeddings): # CLIP's text model uses causal mask, so we prepare it here: bsz, seq_len = input_embeddings.shape[:2] # causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) # causal_attention_mask = self._create_4d_causal_attention_mask(input_shape=(bsz, seq_len), dtype=input_embeddings.dtype, device=self.device) causal_attention_mask = self.text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) # Getting the output embeddings involves calling the model with passing output_hidden_states=True # so that it doesn't just return the pooled final predictions: encoder_outputs = self.text_encoder.text_model.encoder( inputs_embeds=input_embeddings, attention_mask=None, # We aren't using an attention mask so that can be None causal_attention_mask=causal_attention_mask.to(self.device), output_attentions=None, output_hidden_states=True, # We want the output embs not the final output return_dict=None, ) # We're interested in the output hidden state only output = encoder_outputs[0] # There is a final layer norm we need to pass these through output = self.text_encoder.text_model.final_layer_norm(output) # And now they're ready! return output def set_timesteps(self, num_inference_steps): self.scheduler.set_timesteps(num_inference_steps) self.scheduler.timesteps = self.scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925 def pil_to_latent(self, input_im): # Single image -> single latent in a batch (so size 1, 4, 64, 64) with torch.no_grad(): latent = self.vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(self.device)*2-1) # Note scaling return 0.18215 * latent.latent_dist.sample() def latents_to_pil(self, latents): # bath of latents -> list of images latents = (1 / 0.18215) * latents with torch.no_grad(): image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.detach().cpu().permute(0, 2, 3, 1).numpy() images = (image * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] return pil_images def grayscale_loss(self, images): """ Calculate the grayscale loss, which measures how far the image is from being grayscale. A grayscale image has R = G = B for each pixel. Args: images (torch.Tensor): A tensor of shape (batch_size, 3, H, W) where 3 corresponds to the RGB channels of the image. Returns: torch.Tensor: A scalar loss value indicating how far the image is from being grayscale. """ # Calculate the absolute difference between the channels # images[:, 0] -> Red channel, images[:, 1] -> Green channel, images[:, 2] -> Blue channel rg_diff = torch.abs(images[:, 0] - images[:, 1]) # R - G gb_diff = torch.abs(images[:, 1] - images[:, 2]) # G - B rb_diff = torch.abs(images[:, 0] - images[:, 2]) # R - B # Compute the mean of these differences across the batch and image dimensions loss = torch.mean(rg_diff + gb_diff + rb_diff) return loss def blue_loss(self, images): # How far are the blue channel values to 0.9: # error = torch.abs(images[:,2] - 0.9).mean() # [:,2] -> all images in batch, only the blue channel # Call grayscale loss instead of blue loss error = self.grayscale_loss(images) return error def update_latents_with_blue_loss(self, latents, noise_pred, sigma, blue_loss_scale=50, print_loss = False): # Requires grad on the latents latents = latents.detach().requires_grad_() # Get the predicted x0: latents_x0 = latents - sigma * noise_pred # latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample # Decode to image space denoised_images = self.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1) # Calculate loss loss = self.blue_loss(denoised_images) * blue_loss_scale # # Occasionally print it out if print_loss: print('loss:', loss.item()) # Get gradient cond_grad = torch.autograd.grad(loss, latents)[0] # Modify the latents based on this gradient latents = latents.detach() - cond_grad * sigma**2 return latents def generate_with_embs(self, text_embeddings, generator, max_length, batch_size = 1, consider_blue_loss = False): height = 512 # default height of Stable Diffusion width = 512 # default width of Stable Diffusion num_inference_steps = 50 # Number of denoising steps guidance_scale = 7.5 # Scale for classifier-free guidance uncond_input = self.tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" ) with torch.no_grad(): uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Prep Scheduler self.set_timesteps(num_inference_steps) # Prep latents latents = torch.randn( (batch_size, self.unet.in_channels, height // 8, width // 8), generator=generator, # device=self.device ) latents = latents.to(self.device) latents = latents * self.scheduler.init_noise_sigma # Loop for i, t in tqdm(enumerate(self.scheduler.timesteps), total=len(self.scheduler.timesteps)): # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. latent_model_input = torch.cat([latents] * 2) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual with torch.no_grad(): noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] # perform guidance noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) if consider_blue_loss: print_loss = True if i%10==0 else False latents = self.update_latents_with_blue_loss(latents, noise_pred, self.scheduler.sigmas[i], print_loss=print_loss) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents).prev_sample return self.latents_to_pil(latents) def generate_image(self, prompt, concept_index, grayscale_image=False): # # Get the index of the selected concept # concept_index = self.repo_id_embeds.index(selected_concept) prompt_to_send = prompt + " " + self.prompts_suffixes[concept_index] print(f"Selected concept_index: {concept_index}.") print(f"concept_index: {concept_index} Generating image for concept: {self.repo_id_embeds[concept_index]} with prompt: {prompt_to_send}") print(f"Grayscale image: {grayscale_image}") # replace <..> with a placeholder token that can be easily replaced with the embediing after tokenization placeholder_text = "gloucestershire " # 33789 is the token id prompt_to_send = re.sub(r'<.*?>', placeholder_text, prompt_to_send) print(f"prompt after replacing placeholder token: {prompt_to_send}") # Tokenize text_input = self.tokenizer(prompt_to_send, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt") input_ids = text_input.input_ids.to(self.device) # Get token embeddings token_embeddings = self.token_emb_layer(input_ids) # The new embedding - our concept embedding for the special word token # replacement_token_embedding = birb_embed[''].to(torch_device) replacement_token_embedding = self.conceptsEmbeddings[concept_index].to(self.device) print(f"replacement_token_embedding.shape: {replacement_token_embedding.shape} and token_embeddings.shape: {token_embeddings.shape}") print(f"torch.where(input_ids[0]==33789): {torch.where(input_ids[0]==33789)}") # Replace the placholder token with the concept embedding token_embeddings[0, torch.where(input_ids[0]==33789)] = replacement_token_embedding.to(self.device) # print(f"If embedding is replaced: {token_embeddings[0, torch.where(input_ids[0]==33789)] == replacement_token_embedding}") B, T, C = token_embeddings.shape # Get the position embeddings position_embeddings = self.position_emb_layer(self.position_ids[:, :T]) # Combine with pos embs input_embeddings = token_embeddings + position_embeddings # Feed through to get final output embs modified_output_embeddings = self.get_output_embeds(input_embeddings) print(f"manual_seed: {concept_index + 11}") generator = torch.manual_seed(concept_index + 11) # And generate an image with this: result = self.generate_with_embs(modified_output_embeddings, generator=generator, max_length=T, consider_blue_loss=grayscale_image)[0] return result