Upload 9 files
Browse files- README.md +30 -7
- app.py +32 -0
- requirements.txt +18 -0
- sd-concepts-library/birb-style_learned_embeds.bin +3 -0
- sd-concepts-library/dragonborn_learned_embeds.bin +3 -0
- sd-concepts-library/matrix_learned_embeds.bin +3 -0
- sd-concepts-library/minecraft-concept-art_learned_embeds.bin +3 -0
- sd-concepts-library/poolrooms_learned_embeds.bin +3 -0
- textual_inversio_with_blueloss.py +297 -0
README.md
CHANGED
@@ -1,13 +1,36 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
short_description: Generates an image based on prompt and the concept library
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Textual Inversion Image Generator with optional center focus(background blur)
|
3 |
+
emoji: 📚
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.50.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
+
# Textual Inversion Image Generator with optional center focus(background blur)
|
13 |
+
|
14 |
+
## Description
|
15 |
+
This is a simple gradio app that allows you to generate images using textual inversion. An prompt is eneterd by the user and a concept is selected from the dropdown menu. The image is generated using the entered prompt and the selected concept. Currently, there are 5 concepts to choose from. To read more about the concepts, refer https://huggingface.co/sd-concepts-library. The user can optionally select if the background should be blurred or not. Selecting that option generates an image that has a blurred background and the main subject is in focus.
|
16 |
+
|
17 |
+
|
18 |
+
## How to use
|
19 |
+
|
20 |
+
1. Enter your prompt in the text input field
|
21 |
+
2. Select the concept from the dropdown menu
|
22 |
+
3. Click on the generate button
|
23 |
+
4. The image will be generated and displayed on the screen
|
24 |
+
|
25 |
+
## How to setup and run the app
|
26 |
+
|
27 |
+
1. Clone the repository
|
28 |
+
2. Install dependencies:
|
29 |
+
```bash
|
30 |
+
pip install -r requirements.txt
|
31 |
+
```
|
32 |
+
3. Run the app.py file
|
33 |
+
```bash
|
34 |
+
python app.py
|
35 |
+
```
|
36 |
+
This will start the gradio app on http://127.0.0.1:7860. Open that link in your browser to use the app.
|
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from textual_inversio_with_blueloss import TextualInversion
|
3 |
+
|
4 |
+
display_choices = ["minecraft concept art", "dragon born", "birb style", "pool rooms", "matrix"]
|
5 |
+
repo_id_embeds=["sd-concepts-library/minecraft-concept-art::with <minecraft-concept-art> concept",
|
6 |
+
"sd-concepts-library/dragonborn::with <dragonborn> concept",
|
7 |
+
"sd-concepts-library/birb-style::in <birb-style> concept",
|
8 |
+
"sd-concepts-library/poolrooms::with <poolrooms>",
|
9 |
+
"sd-concepts-library/matrix::in <hatman-matrix> world"
|
10 |
+
]
|
11 |
+
|
12 |
+
textualInversion = TextualInversion(pretrained_model_name_or_path = "CompVis/stable-diffusion-v1-4", repo_id_embeds=repo_id_embeds)
|
13 |
+
|
14 |
+
def generate_image(prompt, selected_concept, grayscale_image):
|
15 |
+
return textualInversion.generate_image(prompt, display_choices.index(selected_concept), grayscale_image=grayscale_image)
|
16 |
+
|
17 |
+
demo = gr.Interface(
|
18 |
+
fn=generate_image,
|
19 |
+
inputs=[
|
20 |
+
gr.Textbox(label="Enter your prompt"),
|
21 |
+
gr.Dropdown(choices=display_choices, label="Select concept", value=display_choices[0]),
|
22 |
+
gr.Checkbox(label="Grayscale Image", value=False)
|
23 |
+
],
|
24 |
+
outputs=gr.Image(label="Generated Image"),
|
25 |
+
title="Textual Inversion Image Generator",
|
26 |
+
description="Generate images using textual inversion concepts",
|
27 |
+
examples=[["a flying dog", display_choices[0], False]],
|
28 |
+
allow_flagging=False
|
29 |
+
)
|
30 |
+
|
31 |
+
# Launch the app
|
32 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=1.8.0
|
2 |
+
torchvision>=0.9.0
|
3 |
+
pytest>=6.0.0
|
4 |
+
numpy>=1.19.0
|
5 |
+
torchsummary>=1.5.1
|
6 |
+
tqdm
|
7 |
+
matplotlib>=3.0.0
|
8 |
+
diffusers==0.16.1
|
9 |
+
# diffusers==0.21.4
|
10 |
+
ftfy
|
11 |
+
# transformers==4.35.0
|
12 |
+
transformers
|
13 |
+
accelerate
|
14 |
+
safetensors
|
15 |
+
Pillow
|
16 |
+
huggingface-hub==0.25.2
|
17 |
+
gradio
|
18 |
+
opencv-python
|
sd-concepts-library/birb-style_learned_embeds.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2e23a8f2d3628ed77acb8151751ecd4efc4017e8da86bc29af10f855ca308d9
|
3 |
+
size 3819
|
sd-concepts-library/dragonborn_learned_embeds.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78dcbcc13fa0303719ae335097f72413ac3328d8e9da4d637de917add46957b8
|
3 |
+
size 3819
|
sd-concepts-library/matrix_learned_embeds.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b84b50aad5f237f0639cf7d705a66d33b3da5e4e285161fb5084187648f3b0c
|
3 |
+
size 3840
|
sd-concepts-library/minecraft-concept-art_learned_embeds.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af8028909cdbd079194c4100042b96fd39bf65493879c584fd5e7f7984b13383
|
3 |
+
size 3819
|
sd-concepts-library/poolrooms_learned_embeds.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13ac14803186125485b23b1eac11e1bbba83f6c979e8264442d6397656fb4cb0
|
3 |
+
size 3819
|
textual_inversio_with_blueloss.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#@title Import required libraries
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import re
|
5 |
+
from tqdm import tqdm
|
6 |
+
import PIL
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from typing import List, Optional, Tuple, Union
|
10 |
+
|
11 |
+
from torchvision import transforms as tfms
|
12 |
+
from diffusers import StableDiffusionPipeline, AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
13 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
14 |
+
from focus_blur_utils import calculate_focus_blur_loss
|
15 |
+
# from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
16 |
+
|
17 |
+
class TextualInversion:
|
18 |
+
def __init__(self, pretrained_model_name_or_path = "CompVis/stable-diffusion-v1-4", repo_id_embeds=["sd-concepts-library/matrix::with <hatman-matrix> concept"]):
|
19 |
+
#@markdown `pretrained_model_name_or_path` which Stable Diffusion checkpoint you want to use. This should match the one used for training the embeddings.
|
20 |
+
self.pretrained_model_name_or_path = pretrained_model_name_or_path
|
21 |
+
#@title Load your concept here
|
22 |
+
#@markdown Enter the `repo_id` for a concept you like (you can find pre-learned concepts in the public [SD Concepts Library](https://huggingface.co/sd-concepts-library))
|
23 |
+
self.repo_id_embeds = [x.split("::")[0].split("/")[-1] for x in repo_id_embeds]
|
24 |
+
self.prompts_suffixes = [x.split("::")[1] for x in repo_id_embeds]
|
25 |
+
|
26 |
+
# Set device
|
27 |
+
self.device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
28 |
+
if "mps" == self.device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
|
29 |
+
|
30 |
+
#@title Load the Stable Diffusion pipeline
|
31 |
+
# self.pipe = StableDiffusionPipeline.from_pretrained(
|
32 |
+
# pretrained_model_name_or_path,
|
33 |
+
# torch_dtype=torch.float16
|
34 |
+
# ).to(self.device)
|
35 |
+
|
36 |
+
# Load the autoencoder model which will be used to decode the latents into image space.
|
37 |
+
self.vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
|
38 |
+
# Load the tokenizer and text encoder to tokenize and encode the text.
|
39 |
+
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
40 |
+
self.text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
41 |
+
# The UNet model for generating the latents.
|
42 |
+
self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
|
43 |
+
# The noise scheduler
|
44 |
+
self.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
45 |
+
|
46 |
+
# To the GPU we go!
|
47 |
+
self.vae = self.vae.to(self.device)
|
48 |
+
self.text_encoder = self.text_encoder.to(self.device)
|
49 |
+
self.unet = self.unet.to(self.device)
|
50 |
+
|
51 |
+
# Access the token embedding layers
|
52 |
+
# Token Embedding Layer
|
53 |
+
self.token_emb_layer = self.text_encoder.text_model.embeddings.token_embedding
|
54 |
+
# Position Embedding Layer
|
55 |
+
self.position_ids = self.text_encoder.text_model.embeddings.position_ids
|
56 |
+
self.position_emb_layer = self.text_encoder.text_model.embeddings.position_embedding
|
57 |
+
|
58 |
+
self.conceptsEmbeddings = []
|
59 |
+
for index,repo_id in enumerate(self.repo_id_embeds):
|
60 |
+
#@title Load the concept into pipeline
|
61 |
+
concept_embed_lib = torch.load("sd-concepts-library/" + self.repo_id_embeds[index] +"_learned_embeds.bin") # load the concept learned embeddings
|
62 |
+
print(self.repo_id_embeds[index])
|
63 |
+
print(concept_embed_lib.keys())
|
64 |
+
if self.repo_id_embeds[index] in concept_embed_lib.keys():
|
65 |
+
concept_embed = concept_embed_lib[self.repo_id_embeds[index]] # Read the embedding value using the key i.e. concept_embed_lib['<birb-style>']
|
66 |
+
else:
|
67 |
+
first_key, concept_embed = next(iter(concept_embed_lib.items())) # Read the first key and the embedding value
|
68 |
+
|
69 |
+
self.conceptsEmbeddings.append(concept_embed.to(self.device))
|
70 |
+
print(f"len(self.conceptsEmbeddings): {len(self.conceptsEmbeddings)}")
|
71 |
+
|
72 |
+
def _create_4d_causal_attention_mask(
|
73 |
+
input_shape: Union[torch.Size, Tuple, List],
|
74 |
+
dtype: torch.dtype,
|
75 |
+
device: torch.device,
|
76 |
+
past_key_values_length: int = 0,
|
77 |
+
sliding_window: Optional[int] = None,
|
78 |
+
) -> Optional[torch.Tensor]:
|
79 |
+
"""
|
80 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`
|
81 |
+
|
82 |
+
Args:
|
83 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
84 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
85 |
+
dtype (`torch.dtype`):
|
86 |
+
The torch dtype the created mask shall have.
|
87 |
+
device (`int`):
|
88 |
+
The torch device the created mask shall have.
|
89 |
+
sliding_window (`int`, *optional*):
|
90 |
+
If the model uses windowed attention, a sliding window should be passed.
|
91 |
+
"""
|
92 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
93 |
+
|
94 |
+
key_value_length = past_key_values_length + input_shape[-1]
|
95 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
96 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
|
97 |
+
)
|
98 |
+
|
99 |
+
return attention_mask
|
100 |
+
|
101 |
+
def get_output_embeds(self, input_embeddings):
|
102 |
+
# CLIP's text model uses causal mask, so we prepare it here:
|
103 |
+
bsz, seq_len = input_embeddings.shape[:2]
|
104 |
+
# causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
|
105 |
+
# causal_attention_mask = self._create_4d_causal_attention_mask(input_shape=(bsz, seq_len), dtype=input_embeddings.dtype, device=self.device)
|
106 |
+
causal_attention_mask = self.text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
|
107 |
+
|
108 |
+
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
|
109 |
+
# so that it doesn't just return the pooled final predictions:
|
110 |
+
encoder_outputs = self.text_encoder.text_model.encoder(
|
111 |
+
inputs_embeds=input_embeddings,
|
112 |
+
attention_mask=None, # We aren't using an attention mask so that can be None
|
113 |
+
causal_attention_mask=causal_attention_mask.to(self.device),
|
114 |
+
output_attentions=None,
|
115 |
+
output_hidden_states=True, # We want the output embs not the final output
|
116 |
+
return_dict=None,
|
117 |
+
)
|
118 |
+
|
119 |
+
# We're interested in the output hidden state only
|
120 |
+
output = encoder_outputs[0]
|
121 |
+
|
122 |
+
# There is a final layer norm we need to pass these through
|
123 |
+
output = self.text_encoder.text_model.final_layer_norm(output)
|
124 |
+
|
125 |
+
# And now they're ready!
|
126 |
+
return output
|
127 |
+
|
128 |
+
def set_timesteps(self, num_inference_steps):
|
129 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
130 |
+
self.scheduler.timesteps = self.scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
|
131 |
+
|
132 |
+
def pil_to_latent(self, input_im):
|
133 |
+
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|
134 |
+
with torch.no_grad():
|
135 |
+
latent = self.vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(self.device)*2-1) # Note scaling
|
136 |
+
return 0.18215 * latent.latent_dist.sample()
|
137 |
+
|
138 |
+
def latents_to_pil(self, latents):
|
139 |
+
# bath of latents -> list of images
|
140 |
+
latents = (1 / 0.18215) * latents
|
141 |
+
with torch.no_grad():
|
142 |
+
image = self.vae.decode(latents).sample
|
143 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
144 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
145 |
+
images = (image * 255).round().astype("uint8")
|
146 |
+
pil_images = [Image.fromarray(image) for image in images]
|
147 |
+
return pil_images
|
148 |
+
|
149 |
+
def grayscale_loss(self, images):
|
150 |
+
"""
|
151 |
+
Calculate the grayscale loss, which measures how far the image is from being grayscale.
|
152 |
+
A grayscale image has R = G = B for each pixel.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
images (torch.Tensor): A tensor of shape (batch_size, 3, H, W) where 3 corresponds to
|
156 |
+
the RGB channels of the image.
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
torch.Tensor: A scalar loss value indicating how far the image is from being grayscale.
|
160 |
+
"""
|
161 |
+
# Calculate the absolute difference between the channels
|
162 |
+
# images[:, 0] -> Red channel, images[:, 1] -> Green channel, images[:, 2] -> Blue channel
|
163 |
+
rg_diff = torch.abs(images[:, 0] - images[:, 1]) # R - G
|
164 |
+
gb_diff = torch.abs(images[:, 1] - images[:, 2]) # G - B
|
165 |
+
rb_diff = torch.abs(images[:, 0] - images[:, 2]) # R - B
|
166 |
+
|
167 |
+
# Compute the mean of these differences across the batch and image dimensions
|
168 |
+
loss = torch.mean(rg_diff + gb_diff + rb_diff)
|
169 |
+
|
170 |
+
return loss
|
171 |
+
|
172 |
+
def blue_loss(self, images):
|
173 |
+
# How far are the blue channel values to 0.9:
|
174 |
+
# error = torch.abs(images[:,2] - 0.9).mean() # [:,2] -> all images in batch, only the blue channel
|
175 |
+
# Call grayscale loss instead of blue loss
|
176 |
+
error = self.grayscale_loss(images)
|
177 |
+
return error
|
178 |
+
|
179 |
+
def update_latents_with_blue_loss(self, latents, noise_pred, sigma, blue_loss_scale=50, print_loss = False):
|
180 |
+
# Requires grad on the latents
|
181 |
+
latents = latents.detach().requires_grad_()
|
182 |
+
|
183 |
+
# Get the predicted x0:
|
184 |
+
latents_x0 = latents - sigma * noise_pred
|
185 |
+
# latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
|
186 |
+
|
187 |
+
# Decode to image space
|
188 |
+
denoised_images = self.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
189 |
+
|
190 |
+
# Calculate loss
|
191 |
+
loss = self.blue_loss(denoised_images) * blue_loss_scale
|
192 |
+
|
193 |
+
# # Occasionally print it out
|
194 |
+
if print_loss:
|
195 |
+
print('loss:', loss.item())
|
196 |
+
|
197 |
+
# Get gradient
|
198 |
+
cond_grad = torch.autograd.grad(loss, latents)[0]
|
199 |
+
|
200 |
+
# Modify the latents based on this gradient
|
201 |
+
latents = latents.detach() - cond_grad * sigma**2
|
202 |
+
|
203 |
+
return latents
|
204 |
+
|
205 |
+
def generate_with_embs(self, text_embeddings, generator, max_length, batch_size = 1, consider_blue_loss = False):
|
206 |
+
height = 512 # default height of Stable Diffusion
|
207 |
+
width = 512 # default width of Stable Diffusion
|
208 |
+
num_inference_steps = 50 # Number of denoising steps
|
209 |
+
guidance_scale = 7.5 # Scale for classifier-free guidance
|
210 |
+
|
211 |
+
uncond_input = self.tokenizer(
|
212 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
213 |
+
)
|
214 |
+
with torch.no_grad():
|
215 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
216 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
217 |
+
|
218 |
+
# Prep Scheduler
|
219 |
+
self.set_timesteps(num_inference_steps)
|
220 |
+
|
221 |
+
# Prep latents
|
222 |
+
latents = torch.randn(
|
223 |
+
(batch_size, self.unet.in_channels, height // 8, width // 8),
|
224 |
+
generator=generator,
|
225 |
+
# device=self.device
|
226 |
+
)
|
227 |
+
latents = latents.to(self.device)
|
228 |
+
latents = latents * self.scheduler.init_noise_sigma
|
229 |
+
|
230 |
+
# Loop
|
231 |
+
for i, t in tqdm(enumerate(self.scheduler.timesteps), total=len(self.scheduler.timesteps)):
|
232 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
233 |
+
latent_model_input = torch.cat([latents] * 2)
|
234 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
235 |
+
|
236 |
+
# predict the noise residual
|
237 |
+
with torch.no_grad():
|
238 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
239 |
+
|
240 |
+
# perform guidance
|
241 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
242 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
243 |
+
|
244 |
+
if consider_blue_loss:
|
245 |
+
print_loss = True if i%10==0 else False
|
246 |
+
latents = self.update_latents_with_blue_loss(latents, noise_pred, self.scheduler.sigmas[i], print_loss=print_loss)
|
247 |
+
|
248 |
+
# compute the previous noisy sample x_t -> x_t-1
|
249 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
250 |
+
|
251 |
+
return self.latents_to_pil(latents)
|
252 |
+
|
253 |
+
|
254 |
+
def generate_image(self, prompt, concept_index, grayscale_image=False):
|
255 |
+
# # Get the index of the selected concept
|
256 |
+
# concept_index = self.repo_id_embeds.index(selected_concept)
|
257 |
+
prompt_to_send = prompt + " " + self.prompts_suffixes[concept_index]
|
258 |
+
print(f"Selected concept_index: {concept_index}.")
|
259 |
+
print(f"concept_index: {concept_index} Generating image for concept: {self.repo_id_embeds[concept_index]} with prompt: {prompt_to_send}")
|
260 |
+
print(f"Grayscale image: {grayscale_image}")
|
261 |
+
|
262 |
+
# replace <..> with a placeholder token that can be easily replaced with the embediing after tokenization
|
263 |
+
placeholder_text = "gloucestershire " # 33789 is the token id
|
264 |
+
prompt_to_send = re.sub(r'<.*?>', placeholder_text, prompt_to_send)
|
265 |
+
print(f"prompt after replacing placeholder token: {prompt_to_send}")
|
266 |
+
# Tokenize
|
267 |
+
text_input = self.tokenizer(prompt_to_send, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
268 |
+
input_ids = text_input.input_ids.to(self.device)
|
269 |
+
|
270 |
+
# Get token embeddings
|
271 |
+
token_embeddings = self.token_emb_layer(input_ids)
|
272 |
+
|
273 |
+
# The new embedding - our concept embedding for the special word token
|
274 |
+
# replacement_token_embedding = birb_embed['<birb-style>'].to(torch_device)
|
275 |
+
replacement_token_embedding = self.conceptsEmbeddings[concept_index].to(self.device)
|
276 |
+
print(f"replacement_token_embedding.shape: {replacement_token_embedding.shape} and token_embeddings.shape: {token_embeddings.shape}")
|
277 |
+
print(f"torch.where(input_ids[0]==33789): {torch.where(input_ids[0]==33789)}")
|
278 |
+
# Replace the placholder token with the concept embedding
|
279 |
+
token_embeddings[0, torch.where(input_ids[0]==33789)] = replacement_token_embedding.to(self.device)
|
280 |
+
# print(f"If embedding is replaced: {token_embeddings[0, torch.where(input_ids[0]==33789)] == replacement_token_embedding}")
|
281 |
+
|
282 |
+
B, T, C = token_embeddings.shape
|
283 |
+
# Get the position embeddings
|
284 |
+
position_embeddings = self.position_emb_layer(self.position_ids[:, :T])
|
285 |
+
|
286 |
+
# Combine with pos embs
|
287 |
+
input_embeddings = token_embeddings + position_embeddings
|
288 |
+
|
289 |
+
# Feed through to get final output embs
|
290 |
+
modified_output_embeddings = self.get_output_embeds(input_embeddings)
|
291 |
+
|
292 |
+
print(f"manual_seed: {concept_index + 11}")
|
293 |
+
generator = torch.manual_seed(concept_index + 11)
|
294 |
+
# And generate an image with this:
|
295 |
+
result = self.generate_with_embs(modified_output_embeddings, generator=generator, max_length=T, consider_blue_loss=grayscale_image)[0]
|
296 |
+
|
297 |
+
return result
|