File size: 9,941 Bytes
5a8a0ea
 
 
b4a6b00
5a8a0ea
 
b4a6b00
a4839f9
5a8a0ea
a4839f9
 
 
 
b4a6b00
 
5a8a0ea
 
 
a4839f9
 
 
5a8a0ea
 
a4839f9
 
5a8a0ea
 
 
 
 
a4839f9
5a8a0ea
 
 
 
 
 
 
 
 
 
a4839f9
 
5a8a0ea
 
 
a4839f9
5a8a0ea
 
a4839f9
 
 
 
5a8a0ea
 
a4839f9
 
 
5a8a0ea
a4839f9
 
 
 
 
 
 
 
 
5a8a0ea
a4839f9
 
 
5a8a0ea
 
a4839f9
 
5a8a0ea
 
 
 
a4839f9
 
5a8a0ea
 
a4839f9
 
 
 
5a8a0ea
 
 
 
 
a4839f9
 
5a8a0ea
 
a4839f9
 
5a8a0ea
 
a4839f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np


LIBRARIES = ["ALOY", "APSTUD", "CLI", "TIMOB", "XD"]

def grafico(list_output_mean, list_output_neosp, nome_projeto, pip_choices):
    list_output_mean = [3.152778, 3.375000, 1.423820, 1.052039, 1.297747, 1.224785, 2.250000, 2.375000, 1.540773, 1.847639, 1.491953, 1.052039, 0.983369, 1.669528,
                        1.665236, 1.412554, 1.375000, 1.078326, 1.556330, 1.625000, 1.860515, 1.491953, 1.160944, 1.675966, 1.987661, 2.369099, 1.431867, 1.944742, 2.329399, 1.925429]
    list_output_NEOSP = [3.191631, 3.417342, 1.202562, 0.867979, 1.225224, 1.028501, 2.165318, 2.291910, 1.141041, 1.785504, 1.086850, 0.875381, 0.714992, 1.604599,
                         1.833541, 0.860600, 1.393656, 1.152935, 1.364006, 1.647414, 1.527748, 1.236909, 1.403306, 1.655692, 1.770828, 1.937058, 0.861534, 1.341726, 1.904503, 1.449757]
    list_results = [["Median Regressor", np.mean(list_output_mean)], [
        "NEOSP-SVR Regressor", np.mean(list_output_NEOSP)]]
    fig, (ax1, ax2) = plt.subplots(1, 2)
    # ax1
    if "Median Regressor" in pip_choices:
        df_list_output_mean = pd.DataFrame(list_output_mean, columns=["MAE"])
        ax1.plot(df_list_output_mean.index,
                 df_list_output_mean["MAE"],  label="Median Regressor")
    if "NEOSP-SVR Regressor" in pip_choices:
        df_list_output_NEOSP = pd.DataFrame(list_output_NEOSP, columns=["MAE"])
        ax1.plot(df_list_output_NEOSP.index,
                 df_list_output_NEOSP["MAE"], label="NEOSP-SVR Regressor")
    ax1.set_xlabel("Index Execução")
    ax1.set_ylabel("MAE")
    ax1.legend()
    # ax2
    if "Median Regressor" or "NEOSP-SVR Regressor" in pip_choices:
        df = pd.DataFrame(list_results, columns=["Model", "MAE"])
    if "Median Regressor" in pip_choices:
        ax2.bar(df["Model"].iloc[[0]], df["MAE"].iloc[[0]])
    if "NEOSP-SVR Regressor" in pip_choices:
        ax2.bar(df["Model"].iloc[[1]], df["MAE"].iloc[[1]])
    if "NEOSP-SVR Regressor" and "NEOSP-SVR Regressor" in pip_choices:
        ax2.bar(df["Model"], df["MAE"])
    if "Median Regressor" or "NEOSP-SVR Regressor" in pip_choices:
        ax2.set_ylabel("MAE Médio")
        ax2.set_xlabel("Modelos")
    # graficos geral
    fig.set_figwidth(15)
    fig.set_figheight(4)
    fig.suptitle("Projeto {}".format(nome_projeto))
    return gr.update(value=plt, visible=True)


def create_pip_plot(libraries, pip_choices):
    if "ALOY" in libraries:
        list_output_ALOY_mean = [3.152778, 3.375000, 1.423820, 1.052039, 1.297747, 1.224785, 2.250000, 2.375000, 1.540773, 1.847639, 1.491953, 1.052039, 0.983369, 1.669528,
                                 1.665236, 1.412554, 1.375000, 1.078326, 1.556330, 1.625000, 1.860515, 1.491953, 1.160944, 1.675966, 1.987661, 2.369099, 1.431867, 1.944742, 2.329399, 1.925429]
        list_output_ALOY_NEOSP = [3.191631, 3.417342, 1.202562, 0.867979, 1.225224, 1.028501, 2.165318, 2.291910, 1.141041, 1.785504, 1.086850, 0.875381, 0.714992, 1.604599,
                                  1.833541, 0.860600, 1.393656, 1.152935, 1.364006, 1.647414, 1.527748, 1.236909, 1.403306, 1.655692, 1.770828, 1.937058, 0.861534, 1.341726, 1.904503, 1.449757]
        return grafico(list_output_ALOY_mean, list_output_ALOY_NEOSP, "ALOY", pip_choices)
    elif "APSTUD" in libraries:
        list_output_APSTUD_mean = [5.405978260869565, 5.619565217391305, 4.4375, 4.580434782608696, 4.5, 3.5016304347826086, 1.945108695652174, 4.5, 6.836956521739131, 5.0, 3.1649456521739134, 3.309239130434783, 2.203804347826087, 3.007336956521739, 4.059782608695652, 3.296467391304348, 2.3084239130434785, 3.4937500000000004, 3.774456521739131, 3.7527173913043477, 5.465217391304348, 4.619565217391304, 4.6603260869565215, 3.0625, 2.0070652173913044, 3.059239130434783, 3.3274041937816334, 3.411279826464208,  3.7968185104844543, 8.73709327548807]
        list_output_APSTUD_NEOSP = [5.41661475603331, 5.503547725525665, 4.415931210782633, 4.545322877373284, 4.536777472583356, 3.362346453641618, 1.9843639160064401, 4.470861996846005, 6.7482924452454744, 5.030760970371084, 3.4920408655032915, 3.246151689153077, 2.279240264502646, 3.0146941161291476, 4.098301193482748, 3.3288198557025104, 2.3172072884716948, 3.54395454745025, 3.7937206634843017, 3.7337097584332075, 5.521106648217923, 4.657538991789229, 4.655121901790425, 3.030783487143312, 2.0003910449758164, 3.029204865355089, 3.4122658576760707, 3.362791681092995, 3.7584358231873463, 8.847135170166245]
        return grafico(list_output_APSTUD_mean, list_output_APSTUD_NEOSP, "APSTUD", pip_choices)
    elif "CLI" in libraries:
        list_output_CLI_mean = [3.073851590106007, 0.8678445229681978, 2.225088339222615, 2.574558303886926, 2.6738515901060067, 1.57773851590106, 1.4724381625441698, 2.221554770318021, 2.5, 1.2190812720848054, 1.6420494699646642, 1.871024734982332, 2.069611307420495, 1.5, 1.9703180212014133,
                                0.39081272084805657, 1.9996466431095405, 1.569257950530035, 1.4, 1.1144876325088338, 1.780565371024735, 0.9583038869257952, 1.63321554770318, 1.673317683881064, 2.0082159624413145, 1.9530516431924885, 2.335680751173709, 2.6815336463223787, 1.2699530516431925, 1.4428794992175273]
        list_output_CLI_NEOSP = [3.1538037286288505, 0.937225588342782, 2.1037834307438303, 2.7185375907916134, 2.705821416930853, 1.5651596557303535, 1.1630692970019907, 2.373780602244225, 2.642528080865694, 0.8917870166563835, 1.9119725116172384, 1.895509058775452, 2.2941219868278147, 1.5548661959529118,
                                 2.018983040645479, 0.3002212060779503, 1.8850529066288408, 1.417942660377745, 1.3788045174949335, 1.0137659071118208, 1.4936335189563361, 0.82267957042595,  1.1580797095299311, 1.0556058690485837, 1.7453689640857384, 1.5028556447190604, 2.098886003603931, 2.7192884860222506, 1.1056835708897894, 1.4314289365223634]
        return grafico(list_output_CLI_mean, list_output_CLI_NEOSP, "CLI", pip_choices)
    elif "TIMOB" in libraries:
        list_output_TIMOB_mean = [3.1239187095524747, 3.1127719364782216, 2.558648911447154, 3.275111760244016, 2.7384507690073105, 2.8920827752045573, 3.2534940206252116, 2.50271533011636, 2.9008521214273033, 1.9765121927601954, 2.982737682165163,  2.2250455917240934, 2.531187967012572,  1.9724129722576376,2.572886238561722,  1.768976730007113, 1.9037841682755818, 1.9127182196931205, 2.2375632557666902, 2.007052128848694, 2.139313077939234, 1.9027192358500153, 1.9491901229549842, 2.4138766385529924, 2.830769230769231, 3.545076719845544, 2.7588862920434916, 2.4929051925617314, 2.0218412762930593, 1.7311899197236056]
        list_output_TIMOB_NEOSP = [3.2116159862462017, 3.196289117071299, 2.601474470400067, 3.230862677831728, 2.7402567260480617, 2.8941668879031033, 3.175745376388647, 2.4568824875229156,2.7798433043457753, 1.9535065063757133, 2.9351616923433395, 2.1850743809068365, 2.5550886930385746, 1.9154545407712529, 2.535058252004109, 1.702317100676495, 1.8854684307156933, 1.8659555544639181, 2.2476178674129246, 1.9931473638829218,2.114301637093706, 1.8737288562148644, 1.9429539400920888, 2.438826335039037, 2.8242363751209285, 3.5705528249103615, 2.773252222649539, 2.473583571405169, 1.9530287330281475, 1.687719204969839]
        return grafico(list_output_TIMOB_mean, list_output_TIMOB_NEOSP, "TIMOB", pip_choices)
    elif "XD" in libraries:
        list_output_XD_mean = [2.5098978288633456, 1.7606764928193497, 1.4100529100529098, 2.6373771730914592, 2.5485166288737724, 2.076861300075586, 2.671485260770975, 1.9914021164021165, 2.3930461073318217, 1.8410336356764927, 2.5883408919123205, 2.4966458805744516, 2.603505291005291, 2.162556689342404, 1.3380102040816326, 1.7609126984126984, 1.6026549508692367, 2.5393046107331823, 1.2452286470143614, 1.1508408919123203, 2.3851095993953133, 1.9365079365079363, 1.6403061224489799, 1.4609788359788356, 1.576436130007559, 1.5469576719576719, 1.618433484504913, 1.6909486016628874, 1.581396447467876, 1.61432350718065]
        list_output_XD_NEOSP = [2.153805854606099, 1.3192041744638385, 1.0942568392224865, 2.2671338260999296, 2.2102113658193114, 1.442994939935334, 2.7211806574599327, 1.8784392297541839, 2.516598063436293, 1.8653002237732397, 2.658988020074318, 2.3855459818822085, 2.901597886872319, 2.035113280848767, 1.246124495922638, 1.7778479249011316, 1.4536318108060204, 2.661901532686688, 1.122781370408799, 1.1549609661487965, 2.3562297342031937, 1.5516294190980484, 1.4237175549652095, 1.5386608172757934, 1.4927757348680346, 1.5466779395447403, 1.543884232353307, 1.58210055276562, 1.3658819428699331, 1.3094895420260841]
        return grafico(list_output_XD_mean, list_output_XD_NEOSP, "XD", pip_choices)
    else:
        return gr.update(visible=True)


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            gr.Markdown("## Conjunto de Dados")
            libraries = gr.Dropdown(
                choices=LIBRARIES, label="Projeto", value="ALOY")
        with gr.Column():
            gr.Markdown("## Gráficos")
            pip = gr.CheckboxGroup(
                choices=["Median Regressor", "NEOSP-SVR Regressor"], label="Modelos Preditivos")
            # stars = gr.CheckboxGroup(choices=["Stars", "Week over Week"], label="")
            # issues = gr.CheckboxGroup(choices=["Issue", "Exclude org members", "week over week"], label="")
    with gr.Row():
        fetch = gr.Button(value="Fetch")
    with gr.Row():
        with gr.Column():
            pip_plot = gr.Plot(visible=False)
            # star_plot = gr.Plot(visible=False)
            # issue_plot = gr.Plot(visible=False)

    fetch.click(create_pip_plot, inputs=[libraries, pip], outputs=pip_plot)
    # fetch.click(create_star_plot, inputs=[libraries, pip], outputs=star_plot)
    # fetch.click(create_issue_plot, inputs=[libraries, issues], outputs=issue_plot)

if __name__ == "__main__":
    demo.launch()