import streamlit as st import pandas as pd import os from huggingface_hub import HfApi, hf_hub_download HF_REPO = "giobin/MAIA_human_assessment_annotations" CSV_FILENAME = "user_selections.csv" def assign_samples(csv_path): df = pd.read_csv(csv_path) group_1 = df[(df["pool_pos"] == 1) & (~df["question_category"].str.endswith("_B"))].head(50) group_2 = df[(df["pool_pos"] == 2) & (~df["question_category"].str.endswith("_B"))].head(50) group_3 = df[(df["pool_pos"] == 3) & (~df["question_category"].str.endswith("_B"))].head(50) return { "Bernardo": group_1, "Alessandro": group_1, "Alessio": group_1, "Lenci": group_2, "Lucia": group_2, "Davide": group_2, "Giovanni": group_3, "Raffaella": group_3, } def load_existing_annotations(): """Load the existing annotations from the HF dataset.""" try: file_path = hf_hub_download(HF_REPO, CSV_FILENAME, repo_type="dataset", token=st.secrets["HF_TOKEN"]) return pd.read_csv(file_path) except Exception: return pd.DataFrame(columns=["username", "id"]) # Return empty DataFrame if not found # Load datasets csv_file = "static/mc.csv" assignments = assign_samples(csv_file) existing_annotations = load_existing_annotations() valid_users = list(assignments.keys()) # Initialize session state if "username" not in st.session_state: st.session_state.username = None if "index" not in st.session_state: st.session_state.index = 0 if "results" not in st.session_state: st.session_state.results = [] def update_name(): """Set username and reset index.""" st.session_state.username = st.session_state.selected_user st.session_state.index = 0 # Reset progress if st.session_state.username is None: with st.form("user_form"): st.write("### Select Your Name") selected_user = st.selectbox("Choose your name:", valid_users, key="selected_user") submit_button = st.form_submit_button("Start", on_click=update_name) st.stop() # Get assigned dataset and remove already labeled samples full_dataset = assignments[st.session_state.username].reset_index(drop=True) user_labeled_ids = existing_annotations[existing_annotations["username"] == st.session_state.username]["id"].tolist() dataset = full_dataset[~full_dataset["id"].isin(user_labeled_ids)].reset_index(drop=True) # If all samples are labeled, stop execution if dataset.empty: st.write("### Great! You have completed your assignment. 🎉") st.stop() def push_to_hf_hub(csv_path): api = HfApi() try: api.create_repo(HF_REPO, repo_type="dataset", exist_ok=True, token=st.secrets["HF_TOKEN"]) api.upload_file(path_or_fileobj=csv_path, path_in_repo=CSV_FILENAME, repo_id=HF_REPO, repo_type="dataset", token=st.secrets["HF_TOKEN"]) print(f"Dataset updated: https://huggingface.co/datasets/{HF_REPO}") except Exception as e: print(f"Error pushing to HF: {e}") def save_choice(choice_index): sample = dataset.iloc[st.session_state.index] st.session_state.results.append({ "username": st.session_state.username, "id": sample["id"], "video_id": sample["video_id"], "answer1": sample["answer1"], "answer2": sample["answer2"], "selected_answer": choice_index, "target": sample["target"], "not_enough_info": not_enough_info }) st.session_state.index += 1 st.session_state.checkbox = False # reset the checkbox if st.session_state.index >= len(dataset): # All remaining samples done st.write("### Great! You have completed your assignment. 🎉") result_df = pd.DataFrame(st.session_state.results) csv_path = "user_selections.csv" if not existing_annotations.empty: result_df = pd.concat([existing_annotations, result_df]).drop_duplicates(subset=["username", "id"], keep="last") result_df.to_csv(csv_path, index=False) push_to_hf_hub(csv_path) st.stop() return # Select the current sample sample = dataset.iloc[st.session_state.index] # Title st.markdown("