Spaces:
Runtime error
Runtime error
File size: 3,675 Bytes
83746e4 77ed574 83746e4 3e050a6 77ed574 3e050a6 83746e4 67a039e 83746e4 67a039e 83746e4 3e050a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import gradio as gr
import requests
import os
import json
from collections import deque
# ํ๊ฒฝ ๋ณ์์์ API ํ ํฐ ๊ฐ์ ธ์ค๊ธฐ
TOKEN = os.getenv("HUGGINGFACE_API_TOKEN")
# API ํ ํฐ์ด ์ค์ ๋์ด ์๋์ง ํ์ธ
if not TOKEN:
raise ValueError("API token is not set. Please set the HUGGINGFACE_API_TOKEN environment variable.")
# ๋ํ ๊ธฐ๋ก์ ๊ด๋ฆฌํ๋ ํ (์ต๋ 10๊ฐ์ ๋ํ ๊ธฐ๋ก์ ์ ์ง)
memory = deque(maxlen=10)
def respond(
message,
history: list[tuple[str, str]],
system_message="AI Assistant Role",
max_tokens=512,
temperature=0.7,
top_p=0.95,
):
# ์์คํ
๋ฉ์์ง์ ์ ๋์ฌ ์ถ๊ฐ
system_prefix = "System: ์
๋ ฅ์ด์ ์ธ์ด(์์ด, ํ๊ตญ์ด, ์ค๊ตญ์ด, ์ผ๋ณธ์ด ๋ฑ)์ ๋ฐ๋ผ ๋์ผํ ์ธ์ด๋ก ๋ต๋ณํ๋ผ."
full_system_message = f"{system_prefix}{system_message}"
# ํ์ฌ ๋ํ ๋ด์ฉ์ ๋ฉ๋ชจ๋ฆฌ์ ์ถ๊ฐ
memory.append((message, None))
messages = [{"role": "system", "content": full_system_message}]
# ๋ฉ๋ชจ๋ฆฌ์์ ๋ํ ๊ธฐ๋ก์ ๊ฐ์ ธ์ ๋ฉ์์ง ๋ชฉ๋ก์ ์ถ๊ฐ
for val in memory:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
headers = {
"Authorization": f"Bearer {TOKEN}",
"Content-Type": "application/json"
}
payload = {
"model": "meta-llama/Meta-Llama-3.1-405B-Instruct",
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"messages": messages
}
response = requests.post("https://api-inference.huggingface.co/v1/chat/completions", headers=headers, json=payload, stream=True)
# Stream ๋ฐฉ์์ผ๋ก ๋ฐ์ดํฐ๋ฅผ ์ถ๋ ฅ
response_text = ""
for chunk in response.iter_content(chunk_size=None):
if chunk:
chunk_data = chunk.decode('utf-8')
try:
response_json = json.loads(chunk_data)
# content ์์ญ๋ง ์ถ๋ ฅ
if "choices" in response_json:
content = response_json["choices"][0]["message"]["content"]
response_text += content
yield response_text # ๋์ ๋ ์๋ต์ ์คํธ๋ฆผ ๋ฐฉ์์ผ๋ก ๋ฐํ
except json.JSONDecodeError:
continue # ์ ํจํ์ง ์์ JSON์ด ์์ ๊ฒฝ์ฐ ๋ฌด์ํ๊ณ ๋ค์ ์ฒญํฌ๋ก ๋์ด๊ฐ
# Gradio Blocks API ์ฌ์ฉ
with gr.Blocks() as demo:
with gr.Row():
chatbot = gr.Chatbot()
with gr.Column():
message = gr.Textbox(label="Your message:")
system_message = gr.Textbox(value="AI Assistant Role", label="System message")
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
send_button = gr.Button("Send")
def handle_response(message, history, system_message, max_tokens, temperature, top_p):
bot_response = respond(message, history, system_message, max_tokens, temperature, top_p)
for response in bot_response:
history.append((message, response))
yield history, history
send_button.click(
handle_response,
inputs=[message, chatbot, system_message, max_tokens, temperature, top_p],
outputs=[chatbot, chatbot],
queue=True
)
if __name__ == "__main__":
demo.queue().launch(max_threads=20)
|