Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -12,6 +12,7 @@ from diffusers.utils import load_image
|
|
12 |
from diffusers.utils import export_to_video
|
13 |
import random
|
14 |
from transformers import pipeline
|
|
|
15 |
# Translation model load
|
16 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
17 |
|
@@ -35,31 +36,29 @@ english_labels = {
|
|
35 |
"Seed": "Seed"
|
36 |
}
|
37 |
|
38 |
-
#
|
39 |
base_model = "black-forest-labs/FLUX.1-schnell"
|
40 |
|
41 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
|
42 |
-
pipe = FluxPipeline.from_pretrained(
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
46 |
pipe.transformer.to(memory_format=torch.channels_last)
|
47 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
48 |
|
49 |
-
MAX_SEED = 2**32-1
|
50 |
|
51 |
def save_images_with_unique_filenames(image_list, save_directory):
|
52 |
if not os.path.exists(save_directory):
|
53 |
os.makedirs(save_directory)
|
54 |
-
|
55 |
paths = []
|
56 |
for image in image_list:
|
57 |
unique_filename = f"{uuid.uuid4()}.png"
|
58 |
file_path = os.path.join(save_directory, unique_filename)
|
59 |
-
|
60 |
image.save(file_path)
|
61 |
paths.append(file_path)
|
62 |
-
|
63 |
return paths
|
64 |
|
65 |
def convert_to_centered_scale(num):
|
@@ -91,8 +90,7 @@ def generate(prompt,
|
|
91 |
x_concept_1="", x_concept_2="",
|
92 |
avg_diff_x=None,
|
93 |
total_images=[],
|
94 |
-
gradio_progress=gr.Progress()
|
95 |
-
):
|
96 |
# Translate prompt and concepts if Korean
|
97 |
prompt = translate_if_korean(prompt)
|
98 |
concept_1 = translate_if_korean(concept_1)
|
@@ -100,7 +98,7 @@ def generate(prompt,
|
|
100 |
|
101 |
print(f"Prompt: {prompt}, ← {concept_2}, {concept_1} ➡️ . scale {scale}, interm steps {interm_steps}")
|
102 |
slider_x = [concept_2, concept_1]
|
103 |
-
#
|
104 |
if randomize_seed:
|
105 |
seed = random.randint(0, MAX_SEED)
|
106 |
|
@@ -116,18 +114,22 @@ def generate(prompt,
|
|
116 |
low_scale = -1 * scale
|
117 |
for i in gradio_progress.tqdm(range(interm_steps), desc="Generating images"):
|
118 |
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
|
119 |
-
image = clip_slider.generate(
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
124 |
images.append(image)
|
125 |
-
canvas = Image.new('RGB', (256*interm_steps, 256))
|
126 |
for i, im in enumerate(images):
|
127 |
-
canvas.paste(im.resize((256,256)), (256 * i, 0))
|
128 |
|
129 |
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
|
130 |
-
|
131 |
scale_total = convert_to_centered_scale(interm_steps)
|
132 |
scale_min = scale_total[0]
|
133 |
scale_max = scale_total[-1]
|
@@ -140,9 +142,7 @@ def generate(prompt,
|
|
140 |
return x_concept_1, x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
|
141 |
|
142 |
def update_pre_generated_images(slider_value, total_images):
|
143 |
-
number_images = 0
|
144 |
-
if total_images:
|
145 |
-
number_images = len(total_images)
|
146 |
if number_images > 0:
|
147 |
scale_tuple = convert_to_centered_scale(number_images)
|
148 |
return total_images[scale_tuple.index(slider_value)][0]
|
@@ -152,41 +152,18 @@ def update_pre_generated_images(slider_value, total_images):
|
|
152 |
def reset_recalc_directions():
|
153 |
return True
|
154 |
|
155 |
-
#
|
156 |
-
# 개선된 예제 프롬프트
|
157 |
-
# =======================
|
158 |
examples = [
|
159 |
-
[
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
],
|
165 |
-
[
|
166 |
-
"A bustling city street at dusk with neon lights reflecting on wet pavement, capturing the contrast between day and night.",
|
167 |
-
"Daytime",
|
168 |
-
"Nighttime",
|
169 |
-
2.5
|
170 |
-
],
|
171 |
-
[
|
172 |
-
"An abstract digital art composition featuring vibrant colors and dynamic shapes.",
|
173 |
-
"Calm",
|
174 |
-
"Energetic",
|
175 |
-
2.0
|
176 |
-
],
|
177 |
-
[
|
178 |
-
"여성의 미소와 함께하는 따뜻한 분위기의 인물 사진",
|
179 |
-
"젊음",
|
180 |
-
"노년",
|
181 |
-
2.5
|
182 |
-
]
|
183 |
]
|
184 |
|
185 |
-
#
|
186 |
-
# 밝고 세련된 UI CSS
|
187 |
-
# =======================
|
188 |
css = """
|
189 |
-
/*
|
190 |
body {
|
191 |
background: #ffffff url('https://images.unsplash.com/photo-1506748686214-e9df14d4d9d0?ixlib=rb-1.2.1&auto=format&fit=crop&w=1600&q=80') no-repeat center center fixed;
|
192 |
background-size: cover;
|
@@ -237,7 +214,10 @@ footer {
|
|
237 |
}
|
238 |
"""
|
239 |
|
240 |
-
with gr.Blocks(css=css) as demo:
|
|
|
|
|
|
|
241 |
x_concept_1 = gr.State("")
|
242 |
x_concept_2 = gr.State("")
|
243 |
total_images = gr.State([])
|
@@ -261,15 +241,14 @@ with gr.Blocks(css=css) as demo:
|
|
261 |
concept_1 = gr.Textbox(
|
262 |
label=english_labels["1st direction to steer"],
|
263 |
info="Initial state",
|
264 |
-
placeholder="
|
265 |
)
|
266 |
with gr.Column(scale=1):
|
267 |
concept_2 = gr.Textbox(
|
268 |
label=english_labels["2nd direction to steer"],
|
269 |
info="Final state",
|
270 |
-
placeholder="
|
271 |
)
|
272 |
-
|
273 |
with gr.Row(elem_classes="slider-container"):
|
274 |
x = gr.Slider(
|
275 |
minimum=0,
|
@@ -279,7 +258,6 @@ with gr.Blocks(css=css) as demo:
|
|
279 |
label=english_labels["Strength"],
|
280 |
info="Maximum strength for each direction (above 2.5 may be unstable)"
|
281 |
)
|
282 |
-
|
283 |
submit = gr.Button(english_labels["Generate directions"], size="lg", variant="primary")
|
284 |
|
285 |
# Advanced Options Panel
|
@@ -301,7 +279,6 @@ with gr.Blocks(css=css) as demo:
|
|
301 |
step=0.1,
|
302 |
value=3.5
|
303 |
)
|
304 |
-
|
305 |
with gr.Row():
|
306 |
with gr.Column(scale=1):
|
307 |
iterations = gr.Slider(
|
@@ -319,7 +296,6 @@ with gr.Blocks(css=css) as demo:
|
|
319 |
maximum=4,
|
320 |
step=1
|
321 |
)
|
322 |
-
|
323 |
with gr.Row():
|
324 |
with gr.Column(scale=1):
|
325 |
randomize_seed = gr.Checkbox(
|
@@ -337,32 +313,27 @@ with gr.Blocks(css=css) as demo:
|
|
337 |
)
|
338 |
|
339 |
# Right Column - Output
|
340 |
-
with gr.Column(scale=
|
341 |
with gr.Group(elem_classes="main-panel"):
|
342 |
gr.Markdown("### Generated Results")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
with gr.Row():
|
344 |
-
with gr.Column(scale=
|
345 |
-
image_seq = gr.Image(
|
346 |
-
label=english_labels["Strip"],
|
347 |
-
elem_id="strip",
|
348 |
-
height=100
|
349 |
-
)
|
350 |
-
with gr.Column(scale=2):
|
351 |
-
output_image = gr.Video(
|
352 |
-
label=english_labels["Looping video"],
|
353 |
-
elem_id="video",
|
354 |
-
loop=True,
|
355 |
-
autoplay=True,
|
356 |
-
height=100
|
357 |
-
)
|
358 |
-
with gr.Row(): # Moved this block to be after the video
|
359 |
-
with gr.Column():
|
360 |
post_generation_image = gr.Image(
|
361 |
label=english_labels["Generated Images"],
|
362 |
type="filepath",
|
363 |
elem_id="interactive",
|
364 |
-
elem_classes="image-display"
|
|
|
365 |
)
|
|
|
366 |
post_generation_slider = gr.Slider(
|
367 |
minimum=-10,
|
368 |
maximum=10,
|
@@ -376,19 +347,35 @@ with gr.Blocks(css=css) as demo:
|
|
376 |
examples=examples,
|
377 |
inputs=[prompt, concept_1, concept_2, x],
|
378 |
fn=generate,
|
379 |
-
outputs=[
|
380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
cache_examples="lazy"
|
382 |
)
|
383 |
|
384 |
# Event Handlers
|
385 |
submit.click(
|
386 |
fn=generate,
|
387 |
-
inputs=[
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
)
|
393 |
|
394 |
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
|
|
12 |
from diffusers.utils import export_to_video
|
13 |
import random
|
14 |
from transformers import pipeline
|
15 |
+
|
16 |
# Translation model load
|
17 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
18 |
|
|
|
36 |
"Seed": "Seed"
|
37 |
}
|
38 |
|
39 |
+
# Load pipelines
|
40 |
base_model = "black-forest-labs/FLUX.1-schnell"
|
41 |
|
42 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
|
43 |
+
pipe = FluxPipeline.from_pretrained(
|
44 |
+
base_model,
|
45 |
+
vae=taef1,
|
46 |
+
torch_dtype=torch.bfloat16
|
47 |
+
)
|
48 |
pipe.transformer.to(memory_format=torch.channels_last)
|
49 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
50 |
|
51 |
+
MAX_SEED = 2**32 - 1
|
52 |
|
53 |
def save_images_with_unique_filenames(image_list, save_directory):
|
54 |
if not os.path.exists(save_directory):
|
55 |
os.makedirs(save_directory)
|
|
|
56 |
paths = []
|
57 |
for image in image_list:
|
58 |
unique_filename = f"{uuid.uuid4()}.png"
|
59 |
file_path = os.path.join(save_directory, unique_filename)
|
|
|
60 |
image.save(file_path)
|
61 |
paths.append(file_path)
|
|
|
62 |
return paths
|
63 |
|
64 |
def convert_to_centered_scale(num):
|
|
|
90 |
x_concept_1="", x_concept_2="",
|
91 |
avg_diff_x=None,
|
92 |
total_images=[],
|
93 |
+
gradio_progress=gr.Progress()):
|
|
|
94 |
# Translate prompt and concepts if Korean
|
95 |
prompt = translate_if_korean(prompt)
|
96 |
concept_1 = translate_if_korean(concept_1)
|
|
|
98 |
|
99 |
print(f"Prompt: {prompt}, ← {concept_2}, {concept_1} ➡️ . scale {scale}, interm steps {interm_steps}")
|
100 |
slider_x = [concept_2, concept_1]
|
101 |
+
# Re-calculate latent direction if needed
|
102 |
if randomize_seed:
|
103 |
seed = random.randint(0, MAX_SEED)
|
104 |
|
|
|
114 |
low_scale = -1 * scale
|
115 |
for i in gradio_progress.tqdm(range(interm_steps), desc="Generating images"):
|
116 |
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
|
117 |
+
image = clip_slider.generate(
|
118 |
+
prompt,
|
119 |
+
width=768,
|
120 |
+
height=768,
|
121 |
+
guidance_scale=guidance_scale,
|
122 |
+
scale=cur_scale,
|
123 |
+
seed=seed,
|
124 |
+
num_inference_steps=steps,
|
125 |
+
avg_diff=avg_diff
|
126 |
+
)
|
127 |
images.append(image)
|
128 |
+
canvas = Image.new('RGB', (256 * interm_steps, 256))
|
129 |
for i, im in enumerate(images):
|
130 |
+
canvas.paste(im.resize((256, 256)), (256 * i, 0))
|
131 |
|
132 |
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
|
|
|
133 |
scale_total = convert_to_centered_scale(interm_steps)
|
134 |
scale_min = scale_total[0]
|
135 |
scale_max = scale_total[-1]
|
|
|
142 |
return x_concept_1, x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
|
143 |
|
144 |
def update_pre_generated_images(slider_value, total_images):
|
145 |
+
number_images = len(total_images) if total_images else 0
|
|
|
|
|
146 |
if number_images > 0:
|
147 |
scale_tuple = convert_to_centered_scale(number_images)
|
148 |
return total_images[scale_tuple.index(slider_value)][0]
|
|
|
152 |
def reset_recalc_directions():
|
153 |
return True
|
154 |
|
155 |
+
# Five examples fitting the "Time Stream" theme (one Korean example included)
|
|
|
|
|
156 |
examples = [
|
157 |
+
["신선한 토마토가 부패한 토마토�� 변해가는 과정", "Fresh", "Rotten", 2.0],
|
158 |
+
["A blooming flower gradually withers into decay", "Bloom", "Wither", 1.5],
|
159 |
+
["A vibrant cityscape transforms into a derelict ruin over time", "Modern", "Ruined", 2.5],
|
160 |
+
["A lively forest slowly changes into an autumnal landscape", "Spring", "Autumn", 2.0],
|
161 |
+
["A calm ocean evolves into a stormy seascape as time passes", "Calm", "Stormy", 3.0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
]
|
163 |
|
164 |
+
# CSS for a bright and modern UI with a background image
|
|
|
|
|
165 |
css = """
|
166 |
+
/* Bright and modern UI with background image */
|
167 |
body {
|
168 |
background: #ffffff url('https://images.unsplash.com/photo-1506748686214-e9df14d4d9d0?ixlib=rb-1.2.1&auto=format&fit=crop&w=1600&q=80') no-repeat center center fixed;
|
169 |
background-size: cover;
|
|
|
214 |
}
|
215 |
"""
|
216 |
|
217 |
+
with gr.Blocks(css=css, title="타임 스트림") as demo:
|
218 |
+
# Title and Description
|
219 |
+
gr.Markdown("# 타임 스트림\nA creative journey through the transformation of images over time.")
|
220 |
+
|
221 |
x_concept_1 = gr.State("")
|
222 |
x_concept_2 = gr.State("")
|
223 |
total_images = gr.State([])
|
|
|
241 |
concept_1 = gr.Textbox(
|
242 |
label=english_labels["1st direction to steer"],
|
243 |
info="Initial state",
|
244 |
+
placeholder="Fresh"
|
245 |
)
|
246 |
with gr.Column(scale=1):
|
247 |
concept_2 = gr.Textbox(
|
248 |
label=english_labels["2nd direction to steer"],
|
249 |
info="Final state",
|
250 |
+
placeholder="Rotten"
|
251 |
)
|
|
|
252 |
with gr.Row(elem_classes="slider-container"):
|
253 |
x = gr.Slider(
|
254 |
minimum=0,
|
|
|
258 |
label=english_labels["Strength"],
|
259 |
info="Maximum strength for each direction (above 2.5 may be unstable)"
|
260 |
)
|
|
|
261 |
submit = gr.Button(english_labels["Generate directions"], size="lg", variant="primary")
|
262 |
|
263 |
# Advanced Options Panel
|
|
|
279 |
step=0.1,
|
280 |
value=3.5
|
281 |
)
|
|
|
282 |
with gr.Row():
|
283 |
with gr.Column(scale=1):
|
284 |
iterations = gr.Slider(
|
|
|
296 |
maximum=4,
|
297 |
step=1
|
298 |
)
|
|
|
299 |
with gr.Row():
|
300 |
with gr.Column(scale=1):
|
301 |
randomize_seed = gr.Checkbox(
|
|
|
313 |
)
|
314 |
|
315 |
# Right Column - Output
|
316 |
+
with gr.Column(scale=8):
|
317 |
with gr.Group(elem_classes="main-panel"):
|
318 |
gr.Markdown("### Generated Results")
|
319 |
+
# Video output on top (bigger) and image output below
|
320 |
+
output_video = gr.Video(
|
321 |
+
label=english_labels["Looping video"],
|
322 |
+
elem_id="video",
|
323 |
+
loop=True,
|
324 |
+
autoplay=True,
|
325 |
+
height=400
|
326 |
+
)
|
327 |
with gr.Row():
|
328 |
+
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
post_generation_image = gr.Image(
|
330 |
label=english_labels["Generated Images"],
|
331 |
type="filepath",
|
332 |
elem_id="interactive",
|
333 |
+
elem_classes="image-display",
|
334 |
+
height=200
|
335 |
)
|
336 |
+
with gr.Column(scale=1):
|
337 |
post_generation_slider = gr.Slider(
|
338 |
minimum=-10,
|
339 |
maximum=10,
|
|
|
347 |
examples=examples,
|
348 |
inputs=[prompt, concept_1, concept_2, x],
|
349 |
fn=generate,
|
350 |
+
outputs=[
|
351 |
+
x_concept_1, x_concept_2, avg_diff_x,
|
352 |
+
output_video, # video output (larger)
|
353 |
+
canvas, # image strip (below video)
|
354 |
+
total_images,
|
355 |
+
post_generation_image,
|
356 |
+
post_generation_slider,
|
357 |
+
seed
|
358 |
+
],
|
359 |
cache_examples="lazy"
|
360 |
)
|
361 |
|
362 |
# Event Handlers
|
363 |
submit.click(
|
364 |
fn=generate,
|
365 |
+
inputs=[
|
366 |
+
prompt, concept_1, concept_2, x, randomize_seed, seed,
|
367 |
+
recalc_directions, iterations, steps, interm_steps,
|
368 |
+
guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images
|
369 |
+
],
|
370 |
+
outputs=[
|
371 |
+
x_concept_1, x_concept_2, avg_diff_x,
|
372 |
+
output_video, # video output (larger)
|
373 |
+
canvas, # image strip (below video)
|
374 |
+
total_images,
|
375 |
+
post_generation_image,
|
376 |
+
post_generation_slider,
|
377 |
+
seed
|
378 |
+
]
|
379 |
)
|
380 |
|
381 |
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|