ginipick commited on
Commit
3f4934a
·
verified ·
1 Parent(s): 8570e29

Delete app (19).py

Browse files
Files changed (1) hide show
  1. app (19).py +0 -237
app (19).py DELETED
@@ -1,237 +0,0 @@
1
- import os
2
- import uuid
3
- import gradio as gr
4
- import spaces
5
- from clip_slider_pipeline import CLIPSliderFlux
6
- from diffusers import FluxPipeline, AutoencoderTiny
7
- import torch
8
- import numpy as np
9
- import cv2
10
- from PIL import Image
11
- from diffusers.utils import load_image
12
- from diffusers.utils import export_to_video
13
- import random
14
- from transformers import pipeline
15
-
16
- # 번역 모델 로드
17
- translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
18
-
19
- # 한글 메뉴 이름 dictionary
20
- korean_labels = {
21
- "Prompt": "프롬프트",
22
- "1st direction to steer": "첫 번째 방향",
23
- "2nd direction to steer": "두 번째 방향",
24
- "Strength": "강도",
25
- "Generate directions": "방향 생성",
26
- "Generated Images": "생성된 이미지",
27
- "From 1st to 2nd direction": "첫 번째에서 두 번째 방향으로",
28
- "Strip": "이미지 스트립",
29
- "Looping video": "루프 비디오",
30
- "Advanced options": "고급 옵션",
31
- "Num of intermediate images": "중간 이미지 수",
32
- "Num iterations for clip directions": "클립 방향 반복 횟수",
33
- "Num inference steps": "추론 단계 수",
34
- "Guidance scale": "가이던스 스케일",
35
- "Randomize seed": "시드 무작위화",
36
- "Seed": "시드"
37
- }
38
-
39
- # load pipelines
40
- base_model = "black-forest-labs/FLUX.1-schnell"
41
-
42
- taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
43
- pipe = FluxPipeline.from_pretrained(base_model,
44
- vae=taef1,
45
- torch_dtype=torch.bfloat16)
46
-
47
- pipe.transformer.to(memory_format=torch.channels_last)
48
- #pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
49
- # pipe.enable_model_cpu_offload()
50
- clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
51
-
52
- MAX_SEED = 2**32-1
53
-
54
- def save_images_with_unique_filenames(image_list, save_directory):
55
- if not os.path.exists(save_directory):
56
- os.makedirs(save_directory)
57
-
58
- paths = []
59
- for image in image_list:
60
- unique_filename = f"{uuid.uuid4()}.png"
61
- file_path = os.path.join(save_directory, unique_filename)
62
-
63
- image.save(file_path)
64
- paths.append(file_path)
65
-
66
- return paths
67
-
68
- def convert_to_centered_scale(num):
69
- if num % 2 == 0: # even
70
- start = -(num // 2 - 1)
71
- end = num // 2
72
- else: # odd
73
- start = -(num // 2)
74
- end = num // 2
75
- return tuple(range(start, end + 1))
76
-
77
- def translate_if_korean(text):
78
- if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
79
- return translator(text)[0]['translation_text']
80
- return text
81
-
82
- @spaces.GPU(duration=85)
83
- def generate(prompt,
84
- concept_1,
85
- concept_2,
86
- scale,
87
- randomize_seed=True,
88
- seed=42,
89
- recalc_directions=True,
90
- iterations=200,
91
- steps=3,
92
- interm_steps=33,
93
- guidance_scale=3.5,
94
- x_concept_1="", x_concept_2="",
95
- avg_diff_x=None,
96
- total_images=[],
97
- progress=gr.Progress()
98
- ):
99
- # 프롬프트와 컨셉 번역
100
- prompt = translate_if_korean(prompt)
101
- concept_1 = translate_if_korean(concept_1)
102
- concept_2 = translate_if_korean(concept_2)
103
-
104
- print(f"Prompt: {prompt}, ← {concept_2}, {concept_1} ➡️ . scale {scale}, interm steps {interm_steps}")
105
- slider_x = [concept_2, concept_1]
106
- # check if avg diff for directions need to be re-calculated
107
- if randomize_seed:
108
- seed = random.randint(0, MAX_SEED)
109
-
110
- if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
111
- progress(0, desc="Calculating directions...")
112
- avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
113
- x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
114
-
115
- images = []
116
- high_scale = scale
117
- low_scale = -1 * scale
118
- for i in progress.tqdm(range(interm_steps), desc="Generating images"):
119
- cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
120
- image = clip_slider.generate(prompt,
121
- width=768,
122
- height=768,
123
- guidance_scale=guidance_scale,
124
- scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
125
- images.append(image)
126
- canvas = Image.new('RGB', (256*interm_steps, 256))
127
- for i, im in enumerate(images):
128
- canvas.paste(im.resize((256,256)), (256 * i, 0))
129
-
130
- comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
131
-
132
- scale_total = convert_to_centered_scale(interm_steps)
133
- scale_min = scale_total[0]
134
- scale_max = scale_total[-1]
135
- scale_middle = scale_total.index(0)
136
- post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
137
- avg_diff_x = avg_diff.cpu()
138
-
139
- video_path = f"{uuid.uuid4()}.mp4"
140
- print(video_path)
141
- return x_concept_1,x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
142
-
143
- def update_pre_generated_images(slider_value, total_images):
144
- number_images = len(total_images)
145
- if(number_images > 0):
146
- scale_tuple = convert_to_centered_scale(number_images)
147
- return total_images[scale_tuple.index(slider_value)][0]
148
- else:
149
- return None
150
-
151
- def reset_recalc_directions():
152
- return True
153
-
154
- examples = [["a dog in the park", "winter", "summer", 1.5], ["a house", "USA suburb", "Europe", 2.5], ["a tomato", "rotten", "super fresh", 2.5]]
155
-
156
- css = """
157
- footer {
158
- visibility: hidden;
159
- }
160
- """
161
-
162
- with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
163
- x_concept_1 = gr.State("")
164
- x_concept_2 = gr.State("")
165
- total_images = gr.Gallery(visible=False)
166
-
167
- avg_diff_x = gr.State()
168
-
169
- recalc_directions = gr.State(False)
170
-
171
- with gr.Row():
172
- with gr.Column():
173
- with gr.Group():
174
- prompt = gr.Textbox(label=korean_labels["Prompt"], info="설명할 내용을 입력하세요", placeholder="공원에 있는 강아지")
175
- with gr.Row():
176
- concept_1 = gr.Textbox(label=korean_labels["1st direction to steer"], info="시작 상태", placeholder="겨울")
177
- concept_2 = gr.Textbox(label=korean_labels["2nd direction to steer"], info="종료 상태", placeholder="여름")
178
- x = gr.Slider(minimum=0, value=1.75, step=0.1, maximum=4.0, label=korean_labels["Strength"], info="각 방향의 최대 강도 (2.5 이상은 불안정)")
179
- submit = gr.Button(korean_labels["Generate directions"])
180
- with gr.Column():
181
- with gr.Group(elem_id="group"):
182
- post_generation_image = gr.Image(label=korean_labels["Generated Images"], type="filepath", elem_id="interactive")
183
- post_generation_slider = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label=korean_labels["From 1st to 2nd direction"])
184
- with gr.Row():
185
- with gr.Column(scale=4):
186
- image_seq = gr.Image(label=korean_labels["Strip"], elem_id="strip", height=80)
187
- with gr.Column(scale=2, min_width=100):
188
- output_image = gr.Video(label=korean_labels["Looping video"], elem_id="video", loop=True, autoplay=True)
189
- with gr.Accordion(label=korean_labels["Advanced options"], open=False):
190
- interm_steps = gr.Slider(label=korean_labels["Num of intermediate images"], minimum=3, value=7, maximum=65, step=2)
191
- with gr.Row():
192
- iterations = gr.Slider(label=korean_labels["Num iterations for clip directions"], minimum=0, value=200, maximum=400, step=1)
193
- steps = gr.Slider(label=korean_labels["Num inference steps"], minimum=1, value=3, maximum=4, step=1)
194
- with gr.Row():
195
- guidance_scale = gr.Slider(
196
- label=korean_labels["Guidance scale"],
197
- minimum=0.1,
198
- maximum=10.0,
199
- step=0.1,
200
- value=3.5,
201
- )
202
- with gr.Column():
203
- randomize_seed = gr.Checkbox(True, label=korean_labels["Randomize seed"])
204
- seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label=korean_labels["Seed"], interactive=True, randomize=True)
205
-
206
- examples_gradio = gr.Examples(
207
- examples=examples,
208
- inputs=[prompt, concept_1, concept_2, x],
209
- fn=generate,
210
- outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed],
211
- cache_examples="lazy"
212
- )
213
-
214
- submit.click(
215
- fn=generate,
216
- inputs=[prompt, concept_1, concept_2, x, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images],
217
- outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed]
218
- )
219
- iterations.change(
220
- fn=reset_recalc_directions,
221
- outputs=[recalc_directions]
222
- )
223
- seed.change(
224
- fn=reset_recalc_directions,
225
- outputs=[recalc_directions]
226
- )
227
- post_generation_slider.change(
228
- fn=update_pre_generated_images,
229
- inputs=[post_generation_slider, total_images],
230
- outputs=[post_generation_image],
231
- queue=False,
232
- show_progress="hidden",
233
- concurrency_limit=None
234
- )
235
-
236
- if __name__ == "__main__":
237
- demo.launch()