linoyts HF staff commited on
Commit
014766a
·
verified ·
1 Parent(s): d673341

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -28
app.py CHANGED
@@ -25,7 +25,6 @@ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",
25
 
26
  pipe.transformer.to(memory_format=torch.channels_last)
27
  pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
28
- #pipe.enable_model_cpu_offload()
29
  clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
30
 
31
 
@@ -47,7 +46,6 @@ def generate(slider_x, prompt, seed, recalc_directions, iterations, steps, guida
47
  # check if avg diff for directions need to be re-calculated
48
  print("slider_x", slider_x)
49
  print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
50
- #torch.manual_seed(seed)
51
 
52
  if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
53
  #avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
@@ -65,8 +63,6 @@ def generate(slider_x, prompt, seed, recalc_directions, iterations, steps, guida
65
  scale=0, scale_2nd=0,
66
  seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
67
 
68
-
69
- #comma_concepts_x = ', '.join(slider_x)
70
  comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
71
 
72
  avg_diff_x = avg_diff.cpu()
@@ -79,36 +75,16 @@ def update_scales(x,prompt,seed, steps, guidance_scale,
79
  img2img_type = None, img = None,
80
  controlnet_scale= None, ip_adapter_scale=None,):
81
  avg_diff = avg_diff_x.cuda()
82
- torch.manual_seed(seed)
83
  if img2img_type=="controlnet canny" and img is not None:
84
  control_img = process_controlnet_img(img)
85
  image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
86
  elif img2img_type=="ip adapter" and img is not None:
87
  image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
88
  else:
89
- image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
90
- return image
91
-
92
-
93
-
94
- @spaces.GPU
95
- def update_x(x,y,prompt,seed, steps,
96
- avg_diff_x, avg_diff_y,
97
- img2img_type = None,
98
- img = None):
99
- avg_diff = avg_diff_x.cuda()
100
- avg_diff_2nd = avg_diff_y.cuda()
101
- image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
102
- return image
103
-
104
- @spaces.GPU
105
- def update_y(x,y,prompt,seed, steps,
106
- avg_diff_x, avg_diff_y,
107
- img2img_type = None,
108
- img = None):
109
- avg_diff = avg_diff_x.cuda()
110
- avg_diff_2nd = avg_diff_y.cuda()
111
- image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
112
  return image
113
 
114
  def reset_recalc_directions():
 
25
 
26
  pipe.transformer.to(memory_format=torch.channels_last)
27
  pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
 
28
  clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
29
 
30
 
 
46
  # check if avg diff for directions need to be re-calculated
47
  print("slider_x", slider_x)
48
  print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
 
49
 
50
  if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
51
  #avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
 
63
  scale=0, scale_2nd=0,
64
  seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
65
 
 
 
66
  comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
67
 
68
  avg_diff_x = avg_diff.cpu()
 
75
  img2img_type = None, img = None,
76
  controlnet_scale= None, ip_adapter_scale=None,):
77
  avg_diff = avg_diff_x.cuda()
 
78
  if img2img_type=="controlnet canny" and img is not None:
79
  control_img = process_controlnet_img(img)
80
  image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
81
  elif img2img_type=="ip adapter" and img is not None:
82
  image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
83
  else:
84
+ image = clip_slider.generate(prompt,
85
+ #guidance_scale=guidance_scale,
86
+ scale=x,
87
+ seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
  return image
89
 
90
  def reset_recalc_directions():