Time-Stream / app.py
ginipick's picture
Update app.py
df2f72d verified
raw
history blame
13.4 kB
import os
import uuid
import gradio as gr
import spaces
from clip_slider_pipeline import CLIPSliderFlux
from diffusers import FluxPipeline, AutoencoderTiny
import torch
import numpy as np
import cv2
from PIL import Image
from diffusers.utils import load_image
from diffusers.utils import export_to_video
import random
from transformers import pipeline
# Translation model load
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# English menu labels
english_labels = {
"Prompt": "Prompt",
"1st direction to steer": "1st Direction",
"2nd direction to steer": "2nd Direction",
"Strength": "Strength",
"Generate directions": "Generate Directions",
"Generated Images": "Generated Images",
"From 1st to 2nd direction": "From 1st to 2nd Direction",
"Strip": "Image Strip",
"Looping video": "Looping Video",
"Advanced options": "Advanced Options",
"Num of intermediate images": "Number of Intermediate Images",
"Num iterations for clip directions": "Number of CLIP Direction Iterations",
"Num inference steps": "Number of Inference Steps",
"Guidance scale": "Guidance Scale",
"Randomize seed": "Randomize Seed",
"Seed": "Seed"
}
# load pipelines
base_model = "black-forest-labs/FLUX.1-schnell"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
pipe = FluxPipeline.from_pretrained(base_model,
vae=taef1,
torch_dtype=torch.bfloat16)
pipe.transformer.to(memory_format=torch.channels_last)
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
MAX_SEED = 2**32-1
def save_images_with_unique_filenames(image_list, save_directory):
if not os.path.exists(save_directory):
os.makedirs(save_directory)
paths = []
for image in image_list:
unique_filename = f"{uuid.uuid4()}.png"
file_path = os.path.join(save_directory, unique_filename)
image.save(file_path)
paths.append(file_path)
return paths
def convert_to_centered_scale(num):
if num % 2 == 0: # even
start = -(num // 2 - 1)
end = num // 2
else: # odd
start = -(num // 2)
end = num // 2
return tuple(range(start, end + 1))
def translate_if_korean(text):
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
return translator(text)[0]['translation_text']
return text
@spaces.GPU(duration=85)
def generate(prompt,
concept_1,
concept_2,
scale,
randomize_seed=True,
seed=42,
recalc_directions=True,
iterations=200,
steps=3,
interm_steps=33,
guidance_scale=3.5,
x_concept_1="", x_concept_2="",
avg_diff_x=None,
total_images=[],
gradio_progress=gr.Progress()
):
# Translate prompt and concepts if Korean
prompt = translate_if_korean(prompt)
concept_1 = translate_if_korean(concept_1)
concept_2 = translate_if_korean(concept_2)
print(f"Prompt: {prompt}, ← {concept_2}, {concept_1} ➡️ . scale {scale}, interm steps {interm_steps}")
slider_x = [concept_2, concept_1]
# check if avg diff for directions need to be re-calculated
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
gradio_progress(0, desc="Calculating directions...")
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
images = []
high_scale = scale
low_scale = -1 * scale
for i in gradio_progress.tqdm(range(interm_steps), desc="Generating images"):
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
image = clip_slider.generate(prompt,
width=768,
height=768,
guidance_scale=guidance_scale,
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
images.append(image)
canvas = Image.new('RGB', (256*interm_steps, 256))
for i, im in enumerate(images):
canvas.paste(im.resize((256,256)), (256 * i, 0))
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
scale_total = convert_to_centered_scale(interm_steps)
scale_min = scale_total[0]
scale_max = scale_total[-1]
scale_middle = scale_total.index(0)
post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
avg_diff_x = avg_diff.cpu()
video_path = f"{uuid.uuid4()}.mp4"
print(video_path)
return x_concept_1,x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
def update_pre_generated_images(slider_value, total_images):
number_images = 0
if total_images: # Check if total_images is not None and not empty
number_images = len(total_images)
if(number_images > 0):
scale_tuple = convert_to_centered_scale(number_images)
return total_images[scale_tuple.index(slider_value)][0]
else:
return None
def reset_recalc_directions():
return True
# Updated examples with English text
examples = [
["flower in mountain", "spring", "winter", 1.5],
["a tomato", "super fresh", "rotten", 2.5],
["여자", "아기", "노인", 2.5]
]
css = """
footer {
visibility: hidden;
}
.container {
max-width: 1200px;
margin: auto;
}
.main-panel {
background-color: rgba(255, 255, 255, 0.05);
border-radius: 12px;
padding: 20px;
margin-bottom: 20px;
}
.controls-panel {
background-color: rgba(255, 255, 255, 0.02);
border-radius: 8px;
padding: 16px;
}
.image-display {
min-height: 400px;
display: flex;
flex-direction: column;
justify-content: center;
}
.slider-container {
padding: 10px 0;
}
.advanced-panel {
margin-top: 20px;
border-top: 1px solid rgba(255, 255, 255, 0.1);
padding-top: 20px;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
x_concept_1 = gr.State("")
x_concept_2 = gr.State("")
total_images = gr.State([])
avg_diff_x = gr.State()
recalc_directions = gr.State(False)
with gr.Row(elem_classes="container"):
# Left Column - Controls
with gr.Column(scale=4):
with gr.Group(elem_classes="main-panel"):
gr.Markdown("### Image Generation Controls")
with gr.Group(elem_classes="controls-panel"):
prompt = gr.Textbox(
label=english_labels["Prompt"],
info="Enter the description",
placeholder="A dog in the park",
lines=2
)
with gr.Row():
with gr.Column(scale=1):
concept_1 = gr.Textbox(
label=english_labels["1st direction to steer"],
info="Initial state",
placeholder="winter"
)
with gr.Column(scale=1):
concept_2 = gr.Textbox(
label=english_labels["2nd direction to steer"],
info="Final state",
placeholder="summer"
)
with gr.Row(elem_classes="slider-container"):
x = gr.Slider(
minimum=0,
value=1.75,
step=0.1,
maximum=4.0,
label=english_labels["Strength"],
info="Maximum strength for each direction (above 2.5 may be unstable)"
)
submit = gr.Button(english_labels["Generate directions"], size="lg", variant="primary")
# Advanced Options Panel
with gr.Accordion(label=english_labels["Advanced options"], open=False, elem_classes="advanced-panel"):
with gr.Row():
with gr.Column(scale=1):
interm_steps = gr.Slider(
label=english_labels["Num of intermediate images"],
minimum=3,
value=7,
maximum=65,
step=2
)
with gr.Column(scale=1):
guidance_scale = gr.Slider(
label=english_labels["Guidance scale"],
minimum=0.1,
maximum=10.0,
step=0.1,
value=3.5
)
with gr.Row():
with gr.Column(scale=1):
iterations = gr.Slider(
label=english_labels["Num iterations for clip directions"],
minimum=0,
value=200,
maximum=400,
step=1
)
with gr.Column(scale=1):
steps = gr.Slider(
label=english_labels["Num inference steps"],
minimum=1,
value=3,
maximum=4,
step=1
)
with gr.Row():
with gr.Column(scale=1):
randomize_seed = gr.Checkbox(
True,
label=english_labels["Randomize seed"]
)
with gr.Column(scale=1):
seed = gr.Slider(
minimum=0,
maximum=MAX_SEED,
step=1,
label=english_labels["Seed"],
interactive=True,
randomize=True
)
# Right Column - Output
with gr.Column(scale=6):
with gr.Group(elem_classes="main-panel"):
gr.Markdown("### Generated Results")
with gr.Row():
with gr.Column():
post_generation_image = gr.Image(
label=english_labels["Generated Images"],
type="filepath",
elem_id="interactive",
elem_classes="image-display"
)
post_generation_slider = gr.Slider(
minimum=-10,
maximum=10,
value=0,
step=1,
label=english_labels["From 1st to 2nd direction"]
)
with gr.Row():
with gr.Column(scale=3):
image_seq = gr.Image(
label=english_labels["Strip"],
elem_id="strip",
height=100
)
with gr.Column(scale=2):
output_image = gr.Video(
label=english_labels["Looping video"],
elem_id="video",
loop=True,
autoplay=True,
height=100
)
# Examples Section
gr.Examples(
examples=examples,
inputs=[prompt, concept_1, concept_2, x],
fn=generate,
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images,
post_generation_image, post_generation_slider, seed],
cache_examples="lazy"
)
# Event Handlers
submit.click(
fn=generate,
inputs=[prompt, concept_1, concept_2, x, randomize_seed, seed, recalc_directions,
iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2,
avg_diff_x, total_images, gr.Progress()], # Pass gr.Progress() here
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images,
post_generation_image, post_generation_slider, seed]
)
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
post_generation_slider.change(
fn=update_pre_generated_images,
inputs=[post_generation_slider, total_images],
outputs=[post_generation_image],
queue=False,
show_progress="hidden",
concurrency_limit=None
)
if __name__ == "__main__":
demo.launch()