Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,036 Bytes
86be4e6 2b8b77d 1eb5467 e1fcf74 2b8b77d e2371c5 f1c3cc1 3c2c999 e6d3f1b b8e55c5 e6d3f1b 003a054 b8e55c5 a5eb638 2d475e1 b8e55c5 2d475e1 e1fcf74 b8e55c5 f54a55a 74f2389 2d475e1 292c38f e1fcf74 140db10 86be4e6 3d9ac9f 7d4e0fa 3d9ac9f e6d3f1b b8e55c5 e6d3f1b 6de9995 b5d5466 f8e56c2 b6d1fbd f8e56c2 db1abac b777a65 d368317 f8e56c2 e6d3f1b 8ad2820 140db10 f217e4d 140db10 718ba97 4b98314 00fc70b f217e4d 1eb5467 0cbf06a ca9e441 d368317 3d9ac9f c464ec4 e1ad51f 9d731d3 0cbf06a f40fb7c cd2465c 5e49d53 81ffcd6 dc2976a e438ebb f217e4d 3d9ac9f befc654 3d9ac9f 718ba97 1314d69 20d6ad9 9d731d3 ed049a0 f217e4d d96484a d5a8945 7b9e6e4 718ba97 f217e4d ccc38b8 7cd66c7 e6d3f1b 7cd66c7 e6d3f1b ccc38b8 993abb8 e6d3f1b c36d490 518583e e6d3f1b 518583e e6d3f1b 10c555d e6d3f1b 10c555d e6d3f1b 10c555d e6d3f1b e514550 7c696fc 10c555d e514550 7c696fc 164edec cd2465c 50d6862 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import uuid
import gradio as gr
import spaces
from clip_slider_pipeline import CLIPSliderFlux
from diffusers import FluxPipeline, AutoencoderTiny
import torch
import numpy as np
import cv2
from PIL import Image
from diffusers.utils import load_image
from diffusers.utils import export_to_video
import random
from transformers import pipeline
# Hugging Face ํ ํฐ ๊ฐ์ ธ์ค๊ธฐ
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN environment variable is not set. Please set it to your Hugging Face token.")
# ๋ฒ์ญ ๋ชจ๋ธ ๋ก๋ (ํ ํฐ ์ธ์ฆ ์ถ๊ฐ)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", use_auth_token=hf_token)
# ํ๊ธ ๋ฉ๋ด ์ด๋ฆ dictionary
korean_labels = {
"Prompt": "ํ๋กฌํํธ",
"1st direction to steer": "์ฒซ ๋ฒ์งธ ๋ฐฉํฅ",
"2nd direction to steer": "๋ ๋ฒ์งธ ๋ฐฉํฅ",
"Strength": "๊ฐ๋",
"Generate directions": "๋ฐฉํฅ ์์ฑ",
"Generated Images": "์์ฑ๋ ์ด๋ฏธ์ง",
"From 1st to 2nd direction": "์ฒซ ๋ฒ์งธ์์ ๋ ๋ฒ์งธ ๋ฐฉํฅ์ผ๋ก",
"Strip": "์ด๋ฏธ์ง ์คํธ๋ฆฝ",
"Looping video": "๋ฃจํ ๋น๋์ค",
"Advanced options": "๊ณ ๊ธ ์ต์
",
"Num of intermediate images": "์ค๊ฐ ์ด๋ฏธ์ง ์",
"Num iterations for clip directions": "ํด๋ฆฝ ๋ฐฉํฅ ๋ฐ๋ณต ํ์",
"Num inference steps": "์ถ๋ก ๋จ๊ณ ์",
"Guidance scale": "๊ฐ์ด๋์ค ์ค์ผ์ผ",
"Randomize seed": "์๋ ๋ฌด์์ํ",
"Seed": "์๋"
}
# load pipelines (ํ ํฐ ์ธ์ฆ ์ถ๊ฐ)
# base_model = "black-forest-labs/FLUX.1-dev"
base_model = "black-forest-labs/FLUX.1-schnell"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16, use_auth_token=hf_token).to("cuda")
pipe = FluxPipeline.from_pretrained(base_model,
vae=taef1,
torch_dtype=torch.bfloat16,
use_auth_token=hf_token)
pipe.transformer.to(memory_format=torch.channels_last)
#pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
# pipe.enable_model_cpu_offload()
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
MAX_SEED = 2**32-1
def save_images_with_unique_filenames(image_list, save_directory):
if not os.path.exists(save_directory):
os.makedirs(save_directory)
paths = []
for image in image_list:
unique_filename = f"{uuid.uuid4()}.png"
file_path = os.path.join(save_directory, unique_filename)
image.save(file_path)
paths.append(file_path)
return paths
def convert_to_centered_scale(num):
if num % 2 == 0: # even
start = -(num // 2 - 1)
end = num // 2
else: # odd
start = -(num // 2)
end = num // 2
return tuple(range(start, end + 1))
def translate_if_korean(text):
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
return translator(text, use_auth_token=hf_token)[0]['translation_text']
return text
@spaces.GPU(duration=85)
def generate(prompt,
concept_1,
concept_2,
scale,
randomize_seed=True,
seed=42,
recalc_directions=True,
iterations=200,
steps=3,
interm_steps=33,
guidance_scale=3.5,
x_concept_1="", x_concept_2="",
avg_diff_x=None,
total_images=[],
progress=gr.Progress()
):
# ํ๋กฌํํธ์ ์ปจ์
๋ฒ์ญ
prompt = translate_if_korean(prompt)
concept_1 = translate_if_korean(concept_1)
concept_2 = translate_if_korean(concept_2)
print(f"Prompt: {prompt}, โ {concept_2}, {concept_1} โก๏ธ . scale {scale}, interm steps {interm_steps}")
slider_x = [concept_2, concept_1]
# check if avg diff for directions need to be re-calculated
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
progress(0, desc="Calculating directions...")
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
images = []
high_scale = scale
low_scale = -1 * scale
for i in progress.tqdm(range(interm_steps), desc="Generating images"):
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
image = clip_slider.generate(prompt,
width=768,
height=768,
guidance_scale=guidance_scale,
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
images.append(image)
canvas = Image.new('RGB', (256*interm_steps, 256))
for i, im in enumerate(images):
canvas.paste(im.resize((256,256)), (256 * i, 0))
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
scale_total = convert_to_centered_scale(interm_steps)
scale_min = scale_total[0]
scale_max = scale_total[-1]
scale_middle = scale_total.index(0)
post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
avg_diff_x = avg_diff.cpu()
video_path = f"{uuid.uuid4()}.mp4"
print(video_path)
return x_concept_1,x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
def update_pre_generated_images(slider_value, total_images):
number_images = len(total_images)
if(number_images > 0):
scale_tuple = convert_to_centered_scale(number_images)
return total_images[scale_tuple.index(slider_value)][0]
else:
return None
def reset_recalc_directions():
return True
examples = [["flower in mountain, "spring", "winter", 1.5], ["๋จ์", "์๊ธฐ", "๋
ธ์ธ", 2.5], ["a tomato", "super fresh", "rotten", 2.5]]
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
x_concept_1 = gr.State("")
x_concept_2 = gr.State("")
total_images = gr.Gallery(visible=False)
avg_diff_x = gr.State()
recalc_directions = gr.State(False)
with gr.Row():
with gr.Column():
with gr.Group():
prompt = gr.Textbox(label=korean_labels["Prompt"], info="์ค๋ช
ํ ๋ด์ฉ์ ์
๋ ฅํ์ธ์", placeholder="๊ณต์์ ์๋ ๊ฐ์์ง")
with gr.Row():
concept_1 = gr.Textbox(label=korean_labels["1st direction to steer"], info="์์ ์ํ", placeholder="๊ฒจ์ธ")
concept_2 = gr.Textbox(label=korean_labels["2nd direction to steer"], info="์ข
๋ฃ ์ํ", placeholder="์ฌ๋ฆ")
x = gr.Slider(minimum=0, value=1.75, step=0.1, maximum=4.0, label=korean_labels["Strength"], info="๊ฐ ๋ฐฉํฅ์ ์ต๋ ๊ฐ๋ (2.5 ์ด์์ ๋ถ์์ )")
submit = gr.Button(korean_labels["Generate directions"])
with gr.Column():
with gr.Group(elem_id="group"):
post_generation_image = gr.Image(label=korean_labels["Generated Images"], type="filepath", elem_id="interactive")
post_generation_slider = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label=korean_labels["From 1st to 2nd direction"])
with gr.Row():
with gr.Column(scale=4):
image_seq = gr.Image(label=korean_labels["Strip"], elem_id="strip", height=80)
with gr.Column(scale=2, min_width=100):
output_image = gr.Video(label=korean_labels["Looping video"], elem_id="video", loop=True, autoplay=True)
with gr.Accordion(label=korean_labels["Advanced options"], open=False):
interm_steps = gr.Slider(label=korean_labels["Num of intermediate images"], minimum=3, value=7, maximum=65, step=2)
with gr.Row():
iterations = gr.Slider(label=korean_labels["Num iterations for clip directions"], minimum=0, value=200, maximum=400, step=1)
steps = gr.Slider(label=korean_labels["Num inference steps"], minimum=1, value=3, maximum=4, step=1)
with gr.Row():
guidance_scale = gr.Slider(
label=korean_labels["Guidance scale"],
minimum=0.1,
maximum=10.0,
step=0.1,
value=3.5,
)
with gr.Column():
randomize_seed = gr.Checkbox(True, label=korean_labels["Randomize seed"])
seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label=korean_labels["Seed"], interactive=True, randomize=True)
examples_gradio = gr.Examples(
examples=examples,
inputs=[prompt, concept_1, concept_2, x],
fn=generate,
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed],
cache_examples="lazy"
)
submit.click(
fn=generate,
inputs=[prompt, concept_1, concept_2, x, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images],
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed]
)
iterations.change(
fn=reset_recalc_directions,
outputs=[recalc_directions]
)
seed.change(
fn=reset_recalc_directions,
outputs=[recalc_directions]
)
post_generation_slider.change(
fn=update_pre_generated_images,
inputs=[post_generation_slider, total_images],
outputs=[post_generation_image],
queue=False,
show_progress="hidden",
concurrency_limit=None
)
if __name__ == "__main__":
demo.launch() |