Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -36,37 +36,38 @@ g = GlobalVars()
|
|
36 |
def initialize_models(device):
|
37 |
try:
|
38 |
print("Initializing models...")
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
70 |
|
71 |
except Exception as e:
|
72 |
print(f"Error during model initialization: {str(e)}")
|
@@ -77,13 +78,17 @@ torch.cuda.empty_cache()
|
|
77 |
torch.backends.cuda.matmul.allow_tf32 = True
|
78 |
torch.backends.cudnn.benchmark = True
|
79 |
|
80 |
-
|
81 |
# ํ๊ฒฝ ๋ณ์ ์ค์
|
82 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
|
83 |
os.environ['SPCONV_ALGO'] = 'native'
|
84 |
os.environ['SPARSE_BACKEND'] = 'native'
|
85 |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
86 |
os.environ['TORCH_USE_CUDA_DSA'] = '1'
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
# Hugging Face ํ ํฐ ์ค์
|
89 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
36 |
def initialize_models(device):
|
37 |
try:
|
38 |
print("Initializing models...")
|
39 |
+
with torch.no_grad():
|
40 |
+
# 3D ์์ฑ ํ์ดํ๋ผ์ธ
|
41 |
+
g.trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained(
|
42 |
+
"JeffreyXiang/TRELLIS-image-large"
|
43 |
+
)
|
44 |
+
|
45 |
+
# ์ด๋ฏธ์ง ์์ฑ ํ์ดํ๋ผ์ธ
|
46 |
+
print("Loading flux_pipe...")
|
47 |
+
g.flux_pipe = FluxPipeline.from_pretrained(
|
48 |
+
"black-forest-labs/FLUX.1-dev",
|
49 |
+
torch_dtype=torch.bfloat16,
|
50 |
+
device_map="balanced"
|
51 |
+
)
|
52 |
+
|
53 |
+
# Hyper-SD LoRA ๋ก๋
|
54 |
+
print("Loading LoRA weights...")
|
55 |
+
lora_path = hf_hub_download(
|
56 |
+
"ByteDance/Hyper-SD",
|
57 |
+
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
|
58 |
+
use_auth_token=HF_TOKEN
|
59 |
+
)
|
60 |
+
g.flux_pipe.load_lora_weights(lora_path)
|
61 |
+
g.flux_pipe.fuse_lora(lora_scale=0.125)
|
62 |
+
|
63 |
+
# ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ
|
64 |
+
print("Initializing translator...")
|
65 |
+
g.translator = transformers_pipeline(
|
66 |
+
"translation",
|
67 |
+
model="Helsinki-NLP/opus-mt-ko-en",
|
68 |
+
device=device
|
69 |
+
)
|
70 |
+
print("Model initialization completed successfully")
|
71 |
|
72 |
except Exception as e:
|
73 |
print(f"Error during model initialization: {str(e)}")
|
|
|
78 |
torch.backends.cuda.matmul.allow_tf32 = True
|
79 |
torch.backends.cudnn.benchmark = True
|
80 |
|
|
|
81 |
# ํ๊ฒฝ ๋ณ์ ์ค์
|
82 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
|
83 |
os.environ['SPCONV_ALGO'] = 'native'
|
84 |
os.environ['SPARSE_BACKEND'] = 'native'
|
85 |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
86 |
os.environ['TORCH_USE_CUDA_DSA'] = '1'
|
87 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
88 |
+
|
89 |
+
# CUDA ์ด๊ธฐํ ๋ฐฉ์ง
|
90 |
+
torch.set_grad_enabled(False)
|
91 |
+
|
92 |
|
93 |
# Hugging Face ํ ํฐ ์ค์
|
94 |
HF_TOKEN = os.getenv("HF_TOKEN")
|