JeffreyXiang's picture
update
15fe7bc
raw
history blame
12.5 kB
// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto. Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.
#include "torch_common.inl"
#include "torch_types.h"
#include "../common/common.h"
#include "../common/rasterize.h"
#include "../common/cudaraster/CudaRaster.hpp"
#include "../common/cudaraster/impl/Constants.hpp"
#include <tuple>
//------------------------------------------------------------------------
// Kernel prototypes.
void RasterizeCudaFwdShaderKernel(const RasterizeCudaFwdShaderParams p);
void RasterizeGradKernel(const RasterizeGradParams p);
void RasterizeGradKernelDb(const RasterizeGradParams p);
//------------------------------------------------------------------------
// Python CudaRaster state wrapper methods.
RasterizeCRStateWrapper::RasterizeCRStateWrapper(int cudaDeviceIdx_)
{
const at::cuda::OptionalCUDAGuard device_guard(cudaDeviceIdx_);
cudaDeviceIdx = cudaDeviceIdx_;
cr = new CR::CudaRaster();
}
RasterizeCRStateWrapper::~RasterizeCRStateWrapper(void)
{
const at::cuda::OptionalCUDAGuard device_guard(cudaDeviceIdx);
delete cr;
}
//------------------------------------------------------------------------
// Forward op (Cuda).
std::tuple<torch::Tensor, torch::Tensor> rasterize_fwd_cuda(RasterizeCRStateWrapper& stateWrapper, torch::Tensor pos, torch::Tensor tri, std::tuple<int, int> resolution, torch::Tensor ranges, int peeling_idx)
{
const at::cuda::OptionalCUDAGuard device_guard(device_of(pos));
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
CR::CudaRaster* cr = stateWrapper.cr;
// Check inputs.
NVDR_CHECK_DEVICE(pos, tri);
NVDR_CHECK_CPU(ranges);
NVDR_CHECK_CONTIGUOUS(pos, tri, ranges);
NVDR_CHECK_F32(pos);
NVDR_CHECK_I32(tri, ranges);
// Check that CudaRaster context was created for the correct GPU.
NVDR_CHECK(pos.get_device() == stateWrapper.cudaDeviceIdx, "CudaRaster context must must reside on the same device as input tensors");
// Determine instance mode and check input dimensions.
bool instance_mode = pos.sizes().size() > 2;
if (instance_mode)
NVDR_CHECK(pos.sizes().size() == 3 && pos.size(0) > 0 && pos.size(1) > 0 && pos.size(2) == 4, "instance mode - pos must have shape [>0, >0, 4]");
else
{
NVDR_CHECK(pos.sizes().size() == 2 && pos.size(0) > 0 && pos.size(1) == 4, "range mode - pos must have shape [>0, 4]");
NVDR_CHECK(ranges.sizes().size() == 2 && ranges.size(0) > 0 && ranges.size(1) == 2, "range mode - ranges must have shape [>0, 2]");
}
NVDR_CHECK(tri.sizes().size() == 2 && tri.size(0) > 0 && tri.size(1) == 3, "tri must have shape [>0, 3]");
// Get output shape.
int height_out = std::get<0>(resolution);
int width_out = std::get<1>(resolution);
int depth = instance_mode ? pos.size(0) : ranges.size(0); // Depth of tensor, not related to depth buffering.
NVDR_CHECK(height_out > 0 && width_out > 0, "resolution must be [>0, >0]");
// Round internal resolution up to tile size.
int height = (height_out + CR_TILE_SIZE - 1) & (-CR_TILE_SIZE);
int width = (width_out + CR_TILE_SIZE - 1) & (-CR_TILE_SIZE);
// Get position and triangle buffer sizes in vertices / triangles.
int posCount = instance_mode ? pos.size(1) : pos.size(0);
int triCount = tri.size(0);
// Set up CudaRaster buffers.
const float* posPtr = pos.data_ptr<float>();
const int32_t* rangesPtr = instance_mode ? 0 : ranges.data_ptr<int32_t>(); // This is in CPU memory.
const int32_t* triPtr = tri.data_ptr<int32_t>();
cr->setVertexBuffer((void*)posPtr, posCount);
cr->setIndexBuffer((void*)triPtr, triCount);
cr->setBufferSize(width_out, height_out, depth);
// Enable depth peeling?
bool enablePeel = (peeling_idx > 0);
cr->setRenderModeFlags(enablePeel ? CR::CudaRaster::RenderModeFlag_EnableDepthPeeling : 0); // No backface culling.
if (enablePeel)
cr->swapDepthAndPeel(); // Use previous depth buffer as peeling depth input.
// Determine viewport tiling.
int tileCountX = (width + CR_MAXVIEWPORT_SIZE - 1) / CR_MAXVIEWPORT_SIZE;
int tileCountY = (height + CR_MAXVIEWPORT_SIZE - 1) / CR_MAXVIEWPORT_SIZE;
int tileSizeX = ((width + tileCountX - 1) / tileCountX + CR_TILE_SIZE - 1) & (-CR_TILE_SIZE);
int tileSizeY = ((height + tileCountY - 1) / tileCountY + CR_TILE_SIZE - 1) & (-CR_TILE_SIZE);
TORCH_CHECK(tileCountX > 0 && tileCountY > 0 && tileSizeX > 0 && tileSizeY > 0, "internal error in tile size calculation: count or size is zero");
TORCH_CHECK(tileSizeX <= CR_MAXVIEWPORT_SIZE && tileSizeY <= CR_MAXVIEWPORT_SIZE, "internal error in tile size calculation: tile larger than allowed");
TORCH_CHECK((tileSizeX & (CR_TILE_SIZE - 1)) == 0 && (tileSizeY & (CR_TILE_SIZE - 1)) == 0, "internal error in tile size calculation: tile not divisible by ", CR_TILE_SIZE);
TORCH_CHECK(tileCountX * tileSizeX >= width && tileCountY * tileSizeY >= height, "internal error in tile size calculation: tiles do not cover viewport");
// Rasterize in tiles.
for (int tileY = 0; tileY < tileCountY; tileY++)
for (int tileX = 0; tileX < tileCountX; tileX++)
{
// Set CudaRaster viewport according to tile.
int offsetX = tileX * tileSizeX;
int offsetY = tileY * tileSizeY;
int sizeX = (width_out - offsetX) < tileSizeX ? (width_out - offsetX) : tileSizeX;
int sizeY = (height_out - offsetY) < tileSizeY ? (height_out - offsetY) : tileSizeY;
cr->setViewport(sizeX, sizeY, offsetX, offsetY);
// Run all triangles in one batch. In case of error, the workload could be split into smaller batches - maybe do that in the future.
// Only enable peeling-specific optimizations to skip first stages when image fits in one tile. Those are not valid otherwise.
cr->deferredClear(0u);
bool success = cr->drawTriangles(rangesPtr, enablePeel && (tileCountX == 1 && tileCountY == 1), stream);
NVDR_CHECK(success, "subtriangle count overflow");
}
// Allocate output tensors.
torch::TensorOptions opts = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
torch::Tensor out = torch::empty({depth, height_out, width_out, 4}, opts);
torch::Tensor out_db = torch::empty({depth, height_out, width_out, 4}, opts);
// Populate pixel shader kernel parameters.
RasterizeCudaFwdShaderParams p;
p.pos = posPtr;
p.tri = triPtr;
p.in_idx = (const int*)cr->getColorBuffer();
p.out = out.data_ptr<float>();
p.out_db = out_db.data_ptr<float>();
p.numTriangles = triCount;
p.numVertices = posCount;
p.width_in = width;
p.height_in = height;
p.width_out = width_out;
p.height_out = height_out;
p.depth = depth;
p.instance_mode = (pos.sizes().size() > 2) ? 1 : 0;
p.xs = 2.f / (float)width_out;
p.xo = 1.f / (float)width_out - 1.f;
p.ys = 2.f / (float)height_out;
p.yo = 1.f / (float)height_out - 1.f;
// Verify that buffers are aligned to allow float2/float4 operations.
NVDR_CHECK(!((uintptr_t)p.pos & 15), "pos input tensor not aligned to float4");
NVDR_CHECK(!((uintptr_t)p.out & 15), "out output tensor not aligned to float4");
NVDR_CHECK(!((uintptr_t)p.out_db & 15), "out_db output tensor not aligned to float4");
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(RAST_CUDA_FWD_SHADER_KERNEL_BLOCK_WIDTH, RAST_CUDA_FWD_SHADER_KERNEL_BLOCK_HEIGHT, p.width_out, p.height_out);
dim3 gridSize = getLaunchGridSize(blockSize, p.width_out, p.height_out, p.depth);
// Launch CUDA kernel.
void* args[] = {&p};
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((void*)RasterizeCudaFwdShaderKernel, gridSize, blockSize, args, 0, stream));
// Return.
return std::tuple<torch::Tensor, torch::Tensor>(out, out_db);
}
//------------------------------------------------------------------------
// Gradient op.
torch::Tensor rasterize_grad_db(torch::Tensor pos, torch::Tensor tri, torch::Tensor out, torch::Tensor dy, torch::Tensor ddb)
{
const at::cuda::OptionalCUDAGuard device_guard(device_of(pos));
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
RasterizeGradParams p;
bool enable_db = ddb.defined();
// Check inputs.
if (enable_db)
{
NVDR_CHECK_DEVICE(pos, tri, out, dy, ddb);
NVDR_CHECK_CONTIGUOUS(pos, tri, out);
NVDR_CHECK_F32(pos, out, dy, ddb);
NVDR_CHECK_I32(tri);
}
else
{
NVDR_CHECK_DEVICE(pos, tri, out, dy);
NVDR_CHECK_CONTIGUOUS(pos, tri, out);
NVDR_CHECK_F32(pos, out, dy);
NVDR_CHECK_I32(tri);
}
// Determine instance mode.
p.instance_mode = (pos.sizes().size() > 2) ? 1 : 0;
// Shape is taken from the rasterizer output tensor.
NVDR_CHECK(out.sizes().size() == 4, "tensor out must be rank-4");
p.depth = out.size(0);
p.height = out.size(1);
p.width = out.size(2);
NVDR_CHECK(p.depth > 0 && p.height > 0 && p.width > 0, "resolution must be [>0, >0, >0]");
// Check other shapes.
if (p.instance_mode)
NVDR_CHECK(pos.sizes().size() == 3 && pos.size(0) == p.depth && pos.size(1) > 0 && pos.size(2) == 4, "pos must have shape [depth, >0, 4]");
else
NVDR_CHECK(pos.sizes().size() == 2 && pos.size(0) > 0 && pos.size(1) == 4, "pos must have shape [>0, 4]");
NVDR_CHECK(tri.sizes().size() == 2 && tri.size(0) > 0 && tri.size(1) == 3, "tri must have shape [>0, 3]");
NVDR_CHECK(out.sizes().size() == 4 && out.size(0) == p.depth && out.size(1) == p.height && out.size(2) == p.width && out.size(3) == 4, "out must have shape [depth, height, width, 4]");
NVDR_CHECK( dy.sizes().size() == 4 && dy.size(0) == p.depth && dy.size(1) == p.height && dy.size(2) == p.width && dy.size(3) == 4, "dy must have shape [depth, height, width, 4]");
if (enable_db)
NVDR_CHECK(ddb.sizes().size() == 4 && ddb.size(0) == p.depth && ddb.size(1) == p.height && ddb.size(2) == p.width && ddb.size(3) == 4, "ddb must have shape [depth, height, width, 4]");
// Ensure gradients are contiguous.
torch::Tensor dy_ = dy.contiguous();
torch::Tensor ddb_;
if (enable_db)
ddb_ = ddb.contiguous();
// Populate parameters.
p.numTriangles = tri.size(0);
p.numVertices = p.instance_mode ? pos.size(1) : pos.size(0);
p.pos = pos.data_ptr<float>();
p.tri = tri.data_ptr<int>();
p.out = out.data_ptr<float>();
p.dy = dy_.data_ptr<float>();
p.ddb = enable_db ? ddb_.data_ptr<float>() : NULL;
// Set up pixel position to clip space x, y transform.
p.xs = 2.f / (float)p.width;
p.xo = 1.f / (float)p.width - 1.f;
p.ys = 2.f / (float)p.height;
p.yo = 1.f / (float)p.height - 1.f;
// Allocate output tensor for position gradients.
torch::Tensor grad = torch::zeros_like(pos);
p.grad = grad.data_ptr<float>();
// Verify that buffers are aligned to allow float2/float4 operations.
NVDR_CHECK(!((uintptr_t)p.pos & 15), "pos input tensor not aligned to float4");
NVDR_CHECK(!((uintptr_t)p.dy & 7), "dy input tensor not aligned to float2");
NVDR_CHECK(!((uintptr_t)p.ddb & 15), "ddb input tensor not aligned to float4");
// Choose launch parameters.
dim3 blockSize = getLaunchBlockSize(RAST_GRAD_MAX_KERNEL_BLOCK_WIDTH, RAST_GRAD_MAX_KERNEL_BLOCK_HEIGHT, p.width, p.height);
dim3 gridSize = getLaunchGridSize(blockSize, p.width, p.height, p.depth);
// Launch CUDA kernel.
void* args[] = {&p};
void* func = enable_db ? (void*)RasterizeGradKernelDb : (void*)RasterizeGradKernel;
NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel(func, gridSize, blockSize, args, 0, stream));
// Return the gradients.
return grad;
}
// Version without derivatives.
torch::Tensor rasterize_grad(torch::Tensor pos, torch::Tensor tri, torch::Tensor out, torch::Tensor dy)
{
torch::Tensor empty_tensor;
return rasterize_grad_db(pos, tri, out, dy, empty_tensor);
}
//------------------------------------------------------------------------