SORA-3D / app.py
aiqtech's picture
Update app.py
b3a304c verified
raw
history blame
16.9 kB
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from transformers import pipeline as translation_pipeline
from diffusers import FluxPipeline
from typing import *
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
# GPU λ©”λͺ¨λ¦¬ κ΄€λ ¨ ν™˜κ²½ λ³€μˆ˜
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128' # 더 μž‘μ€ κ°’μœΌλ‘œ μ„€μ •
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1'
os.environ['CUDA_CACHE_DISABLE'] = '1'
def initialize_models():
global pipeline, translator, flux_pipe
try:
# CUDA μ„€μ •
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
print("Initializing Trellis pipeline...")
try:
pipeline = TrellisImageTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-image-large"
)
if pipeline is None:
raise ValueError("Pipeline initialization returned None")
if torch.cuda.is_available():
pipeline = pipeline.to("cuda")
# Half precision으둜 λ³€ν™˜
pipeline = pipeline.half()
except Exception as e:
print(f"Error initializing Trellis pipeline: {str(e)}")
raise
print("Initializing translator...")
try:
translator = translation_pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=0 if torch.cuda.is_available() else -1
)
except Exception as e:
print(f"Error initializing translator: {str(e)}")
raise
flux_pipe = None
print("Models initialized successfully")
return True
except Exception as e:
print(f"Model initialization error: {str(e)}")
free_memory()
return False
def get_flux_pipe():
"""Flux νŒŒμ΄ν”„λΌμΈμ„ ν•„μš”ν•  λ•Œλ§Œ λ‘œλ“œν•˜λŠ” ν•¨μˆ˜"""
global flux_pipe
if flux_pipe is None:
try:
free_memory()
flux_pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
use_safetensors=True
)
if torch.cuda.is_available():
flux_pipe = flux_pipe.to("cuda")
flux_pipe.enable_model_cpu_offload() # CPU μ˜€ν”„λ‘œλ”© ν™œμ„±ν™”
except Exception as e:
print(f"Error loading Flux pipeline: {e}")
return None
return flux_pipe
def free_memory():
"""κ°•ν™”λœ λ©”λͺ¨λ¦¬ 정리 ν•¨μˆ˜"""
import gc
import os
# Python 가비지 μ»¬λ ‰μ…˜
gc.collect()
# CUDA λ©”λͺ¨λ¦¬ 정리
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
# μž„μ‹œ 파일 정리
tmp_dirs = ['/tmp/transformers_cache', '/tmp/torch_home',
'/tmp/huggingface', '/tmp/cache', TMP_DIR]
for dir_path in tmp_dirs:
if os.path.exists(dir_path):
try:
for file in os.listdir(dir_path):
file_path = os.path.join(dir_path, file)
if os.path.isfile(file_path):
try:
os.unlink(file_path)
except:
pass
except:
pass
def setup_gpu_model(model):
"""GPU 섀정이 ν•„μš”ν•œ λͺ¨λΈμ„ μ²˜λ¦¬ν•˜λŠ” ν•¨μˆ˜"""
if torch.cuda.is_available():
model = model.to("cuda")
return model
def translate_if_korean(text):
if any(ord('κ°€') <= ord(char) <= ord('힣') for char in text):
translated = translator(text)[0]['translation_text']
return translated
return text
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
if image is None:
return None, None
try:
trial_id = str(uuid.uuid4())
# 이미지 크기 μ œν•œ
max_size = 768
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.LANCZOS)
# 이미지 μ „μ²˜λ¦¬
processed_image = pipeline.preprocess_image(image)
if processed_image is None:
raise Exception("Failed to process image")
# μž„μ‹œ 파일 μ €μž₯
save_path = os.path.join(TMP_DIR, f"{trial_id}.png")
processed_image.save(save_path)
return trial_id, processed_image
except Exception as e:
print(f"Error in preprocess_image: {str(e)}")
return None, None
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float,
ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int):
try:
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
input_image = Image.open(f"{TMP_DIR}/{trial_id}.png")
# L40S에 맞게 이미지 크기 μ œν•œ μ‘°μ •
max_size = 768
if max(input_image.size) > max_size:
ratio = max_size / max(input_image.size)
input_image = input_image.resize(
(int(input_image.size[0] * ratio),
int(input_image.size[1] * ratio)),
Image.LANCZOS
)
if torch.cuda.is_available():
pipeline.to("cuda")
try:
outputs = pipeline.run(
input_image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": min(ss_sampling_steps, 20),
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": min(slat_sampling_steps, 20),
"cfg_strength": slat_guidance_strength,
}
)
except RuntimeError as e:
print(f"Runtime error in pipeline.run: {str(e)}")
free_memory()
raise e
# λΉ„λ””μ˜€ 생성
video = render_utils.render_video(outputs['gaussian'][0], num_frames=40)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=40)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = str(uuid.uuid4())
video_path = f"{TMP_DIR}/{trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=20)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
if torch.cuda.is_available():
pipeline.to("cpu")
return state, video_path
except Exception as e:
print(f"Error in image_to_3d: {str(e)}")
if torch.cuda.is_available():
pipeline.to("cpu")
raise e
def generate_image_from_text(prompt, height, width, guidance_scale, num_steps):
try:
free_memory()
flux_pipe = get_flux_pipe()
if flux_pipe is None:
raise Exception("Failed to load Flux pipeline")
# L40S에 맞게 크기 μ œν•œ μ‘°μ •
height = min(height, 1024)
width = min(width, 1024)
translated_prompt = translate_if_korean(prompt)
final_prompt = f"{translated_prompt}, wbgmsst, 3D, white background"
with torch.cuda.amp.autocast():
output = flux_pipe(
prompt=[final_prompt],
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
generator=torch.Generator(device='cuda')
)
image = output.images[0]
free_memory()
return image
except Exception as e:
print(f"Error in generate_image_from_text: {str(e)}")
free_memory()
raise e
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = f"{TMP_DIR}/{trial_id}.glb"
glb.export(glb_path)
return glb_path, glb_path
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
css = """
footer {
visibility: hidden;
}
"""
# Gradio μΈν„°νŽ˜μ΄μŠ€ μ •μ˜
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
gr.Markdown("""
# Craft3D : 3D Asset Creation & Text-to-Image Generation
""")
with gr.Tabs():
with gr.TabItem("Image to 3D"):
with gr.Row():
with gr.Column():
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
with gr.TabItem("Text to Image"):
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Enter your image description...",
lines=3
)
with gr.Row():
txt2img_height = gr.Slider(256, 1024, value=512, step=64, label="Height")
txt2img_width = gr.Slider(256, 1024, value=512, step=64, label="Width")
with gr.Row():
guidance_scale = gr.Slider(1.0, 20.0, value=7.5, label="Guidance Scale")
num_steps = gr.Slider(1, 50, value=20, label="Number of Steps")
generate_txt2img_btn = gr.Button("Generate Image")
with gr.Column():
txt2img_output = gr.Image(label="Generated Image")
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# Example images
with gr.Row():
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[trial_id, image_prompt],
run_on_click=True,
examples_per_page=32, # 예제 수 κ°μ†Œ
cache_examples=False # 예제 캐싱 λΉ„ν™œμ„±ν™”λŠ” Examples μ»΄ν¬λ„ŒνŠΈμ—μ„œ μ„€μ •
)
# Handlers
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt],
)
image_prompt.clear(
lambda: '',
outputs=[trial_id],
)
generate_btn.click(
image_to_3d,
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps,
slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
concurrency_limit=1
).then(
activate_button,
outputs=[extract_glb_btn]
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
concurrency_limit=1
).then(
activate_button,
outputs=[download_glb]
)
generate_txt2img_btn.click(
generate_image_from_text,
inputs=[text_prompt, txt2img_height, txt2img_width, guidance_scale, num_steps],
outputs=[txt2img_output],
concurrency_limit=1,
show_progress=True # 진행 상황 ν‘œμ‹œ
)
if __name__ == "__main__":
import warnings
warnings.filterwarnings('ignore')
# CUDA μ„€μ • 확인
if torch.cuda.is_available():
print(f"Using GPU: {torch.cuda.get_device_name()}")
print(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
# CUDA λ©”λͺ¨λ¦¬ μ„€μ •
torch.cuda.set_per_process_memory_fraction(0.8) # GPU λ©”λͺ¨λ¦¬ μ‚¬μš©λŸ‰ μ œν•œ
# 디렉토리 생성
os.makedirs(TMP_DIR, exist_ok=True)
# λ©”λͺ¨λ¦¬ 정리
free_memory()
# λͺ¨λΈ μ΄ˆκΈ°ν™”
if not initialize_models():
print("Failed to initialize models")
exit(1)
# Gradio μ•± μ‹€ν–‰
demo.queue(max_size=1).launch(
share=True,
max_threads=2,
show_error=True,
server_port=7860,
server_name="0.0.0.0",
enable_queue=True
)