SORA-3D / app.py
aiqtech's picture
Update app.py
b14b10a verified
raw
history blame
15.5 kB
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from transformers import pipeline as translation_pipeline
from diffusers import FluxPipeline
from typing import *
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
# λ©”λͺ¨λ¦¬ κ΄€λ ¨ ν™˜κ²½ λ³€μˆ˜
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
os.environ['TORCH_HOME'] = '/tmp/torch_home'
os.environ['HF_HOME'] = '/tmp/huggingface'
os.environ['XDG_CACHE_HOME'] = '/tmp/cache'
os.environ['SPCONV_ALGO'] = 'native'
os.environ['WARP_USE_CPU'] = '1'
def initialize_models():
global pipeline, translator, flux_pipe
try:
# μΊμ‹œ 디렉토리 생성
for dir_path in ['/tmp/transformers_cache', '/tmp/torch_home', '/tmp/huggingface', '/tmp/cache']:
os.makedirs(dir_path, exist_ok=True)
# Trellis νŒŒμ΄ν”„λΌμΈ μ΄ˆκΈ°ν™”
pipeline = TrellisImageTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-image-large"
)
# λ²ˆμ—­κΈ° μ΄ˆκΈ°ν™”
translator = translation_pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device="cpu"
)
# Flux νŒŒμ΄ν”„λΌμΈ μ΄ˆκΈ°ν™” (μ¦‰μ‹œ λ‘œλ“œ)
flux_pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.float32
)
print("Models initialized successfully")
return True
except Exception as e:
print(f"Model initialization error: {str(e)}")
return False
def load_flux_pipe():
"""Flux νŒŒμ΄ν”„λΌμΈμ„ ν•„μš”ν•  λ•Œλ§Œ λ‘œλ“œ"""
global flux_pipe
if flux_pipe is None:
flux_pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.float32
)
return flux_pipe
def free_memory():
"""λ©”λͺ¨λ¦¬λ₯Ό μ •λ¦¬ν•˜λŠ” μœ ν‹Έλ¦¬ν‹° ν•¨μˆ˜"""
import gc
gc.collect()
if torch.cuda.is_available():
with torch.cuda.device('cuda'):
torch.cuda.empty_cache()
# μž„μ‹œ 파일 정리
for dir_path in ['/tmp/transformers_cache', '/tmp/torch_home', '/tmp/huggingface', '/tmp/cache']:
if os.path.exists(dir_path):
for file in os.listdir(dir_path):
file_path = os.path.join(dir_path, file)
try:
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception as e:
print(f'Error deleting {file_path}: {e}')
@spaces.GPU
def setup_gpu_model(model):
"""GPU 섀정이 ν•„μš”ν•œ λͺ¨λΈμ„ μ²˜λ¦¬ν•˜λŠ” ν•¨μˆ˜"""
if torch.cuda.is_available():
model = model.to("cuda")
return model
def translate_if_korean(text):
if any(ord('κ°€') <= ord(char) <= ord('힣') for char in text):
translated = translator(text)[0]['translation_text']
return translated
return text
@spaces.GPU
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
try:
trial_id = str(uuid.uuid4())
# 이미지가 λ„ˆλ¬΄ μž‘μ€ 경우 크기 μ‘°μ •
min_size = 64
if image.size[0] < min_size or image.size[1] < min_size:
ratio = min_size / min(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.LANCZOS)
processed_image = pipeline.preprocess_image(image)
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
return trial_id, processed_image
except Exception as e:
print(f"Error in preprocess_image: {str(e)}")
return None, None
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float,
ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int):
try:
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
input_image = Image.open(f"{TMP_DIR}/{trial_id}.png")
# 이미지 크기 μ œν•œ
max_size = 512
if max(input_image.size) > max_size:
ratio = max_size / max(input_image.size)
input_image = input_image.resize(
(int(input_image.size[0] * ratio),
int(input_image.size[1] * ratio)),
Image.LANCZOS
)
if torch.cuda.is_available():
pipeline.to("cuda")
with torch.no_grad():
outputs = pipeline.run(
input_image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": min(ss_sampling_steps, 15),
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": min(slat_sampling_steps, 15),
"cfg_strength": slat_guidance_strength,
}
)
# λΉ„λ””μ˜€ ν”„λ ˆμž„ 수 κ°μ†Œ
video = render_utils.render_video(outputs['gaussian'][0], num_frames=30)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=30)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = str(uuid.uuid4())
video_path = f"{TMP_DIR}/{trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
if torch.cuda.is_available():
pipeline.to("cpu")
return state, video_path
except Exception as e:
print(f"Error in image_to_3d: {str(e)}")
if torch.cuda.is_available():
pipeline.to("cpu")
raise e
@spaces.GPU
def generate_image_from_text(prompt, height, width, guidance_scale, num_steps):
try:
global flux_pipe
if torch.cuda.is_available():
flux_pipe = flux_pipe.to("cuda")
flux_pipe = flux_pipe.to(torch.float16)
# 이미지 크기 μ œν•œ
height = min(height, 512)
width = min(width, 512)
# ν”„λ‘¬ν”„νŠΈ 처리
base_prompt = "wbgmsst, 3D, white background"
translated_prompt = translate_if_korean(prompt)
final_prompt = f"{translated_prompt}, {base_prompt}"
print(f"Generating image with prompt: {final_prompt}")
with torch.inference_mode():
output = flux_pipe(
prompt=[final_prompt],
height=height,
width=width,
guidance_scale=min(guidance_scale, 10.0),
num_inference_steps=min(num_steps, 30)
)
image = output.images[0]
if torch.cuda.is_available():
flux_pipe = flux_pipe.to("cpu")
return image
except Exception as e:
print(f"Error in generate_image_from_text: {str(e)}")
if torch.cuda.is_available():
flux_pipe = flux_pipe.to("cpu")
raise e
@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = f"{TMP_DIR}/{trial_id}.glb"
glb.export(glb_path)
return glb_path, glb_path
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
css = """
footer {
visibility: hidden;
}
"""
# Gradio μΈν„°νŽ˜μ΄μŠ€ μ •μ˜
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
gr.Markdown("""
# Craft3D : 3D Asset Creation & Text-to-Image Generation
""")
with gr.Tabs():
with gr.TabItem("Image to 3D"):
with gr.Row():
with gr.Column():
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
with gr.TabItem("Text to Image"):
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Enter your image description...",
lines=3
)
with gr.Row():
txt2img_height = gr.Slider(256, 1024, value=512, step=64, label="Height")
txt2img_width = gr.Slider(256, 1024, value=512, step=64, label="Width")
with gr.Row():
guidance_scale = gr.Slider(1.0, 20.0, value=7.5, label="Guidance Scale")
num_steps = gr.Slider(1, 50, value=20, label="Number of Steps")
generate_txt2img_btn = gr.Button("Generate Image")
with gr.Column():
txt2img_output = gr.Image(label="Generated Image")
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# Example images
with gr.Row():
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[trial_id, image_prompt],
run_on_click=True,
examples_per_page=32, # 예제 수 κ°μ†Œ
cache_examples=False # 예제 캐싱 λΉ„ν™œμ„±ν™”λŠ” Examples μ»΄ν¬λ„ŒνŠΈμ—μ„œ μ„€μ •
)
# Handlers
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt],
)
image_prompt.clear(
lambda: '',
outputs=[trial_id],
)
generate_btn.click(
image_to_3d,
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps,
slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
concurrency_limit=1
).then(
activate_button,
outputs=[extract_glb_btn]
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
concurrency_limit=1
).then(
activate_button,
outputs=[download_glb]
)
generate_txt2img_btn.click(
generate_image_from_text,
inputs=[text_prompt, txt2img_height, txt2img_width, guidance_scale, num_steps],
outputs=[txt2img_output],
concurrency_limit=1,
show_progress=True # μ§„ν–‰ 상황 ν‘œμ‹œ
)
if __name__ == "__main__":
# λ©”λͺ¨λ¦¬ 정리
free_memory()
# λͺ¨λΈ μ΄ˆκΈ°ν™”
if not initialize_models():
print("Failed to initialize models")
exit(1)
try:
# rembg 사전 λ‘œλ“œ μ‹œλ„ (맀우 μž‘μ€ μ΄λ―Έμ§€λ‘œ)
test_image = Image.fromarray(np.ones((32, 32, 3), dtype=np.uint8) * 255)
pipeline.preprocess_image(test_image)
except Exception as e:
print(f"Warning: Failed to preload rembg: {str(e)}")
# Gradio μ•± μ‹€ν–‰
demo.queue(max_size=3).launch(
share=True,
max_threads=1,
show_error=True
)