SORA-3D / app.py
aiqtech's picture
Update app.py
53f998b verified
raw
history blame
16.3 kB
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from transformers import pipeline as translation_pipeline
from diffusers import FluxPipeline
from typing import *
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
# 메모리 관련 환경 변수
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:32' # 더 작은 값으로 설정
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
os.environ['TORCH_HOME'] = '/tmp/torch_home'
os.environ['HF_HOME'] = '/tmp/huggingface'
os.environ['XDG_CACHE_HOME'] = '/tmp/cache'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
def initialize_models():
global pipeline, translator, flux_pipe
try:
import torch
# 메모리 설정
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
# 캐시 디렉토리 생성 및 정리
for dir_path in ['/tmp/transformers_cache', '/tmp/torch_home', '/tmp/huggingface', '/tmp/cache']:
os.makedirs(dir_path, exist_ok=True)
for file in os.listdir(dir_path):
try:
os.remove(os.path.join(dir_path, file))
except:
pass
# Trellis 파이프라인 초기화
pipeline = TrellisImageTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-image-large",
device_map="auto",
torch_dtype=torch.float16 # 반정밀도 사용
)
# 번역기 초기화
translator = translation_pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device="cpu"
)
flux_pipe = None
free_memory()
print("Models initialized successfully")
return True
except Exception as e:
print(f"Model initialization error: {str(e)}")
free_memory()
return False
def get_flux_pipe():
"""Flux 파이프라인을 필요할 때만 로드하는 함수"""
global flux_pipe
if flux_pipe is None:
try:
free_memory()
flux_pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
device_map="auto",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
low_cpu_mem_usage=True
)
except Exception as e:
print(f"Error loading Flux pipeline: {e}")
return None
return flux_pipe
def free_memory():
"""강화된 메모리 정리 함수"""
import gc
import os
# Python 가비지 컬렉션
gc.collect()
# CUDA 메모리 정리
if torch.cuda.is_available():
torch.cuda.empty_cache()
# 임시 파일 정리
tmp_dirs = ['/tmp/transformers_cache', '/tmp/torch_home',
'/tmp/huggingface', '/tmp/cache']
for dir_path in tmp_dirs:
if os.path.exists(dir_path):
try:
for file in os.listdir(dir_path):
file_path = os.path.join(dir_path, file)
if os.path.isfile(file_path):
try:
os.unlink(file_path)
except:
pass
except:
pass
@spaces.GPU
def setup_gpu_model(model):
"""GPU 설정이 필요한 모델을 처리하는 함수"""
if torch.cuda.is_available():
model = model.to("cuda")
return model
def translate_if_korean(text):
if any(ord('가') <= ord(char) <= ord('힣') for char in text):
translated = translator(text)[0]['translation_text']
return translated
return text
@spaces.GPU
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
try:
trial_id = str(uuid.uuid4())
# 이미지가 너무 작은 경우 크기 조정
min_size = 64
if image.size[0] < min_size or image.size[1] < min_size:
ratio = min_size / min(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.LANCZOS)
processed_image = pipeline.preprocess_image(image)
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
return trial_id, processed_image
except Exception as e:
print(f"Error in preprocess_image: {str(e)}")
return None, None
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float,
ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int):
try:
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
input_image = Image.open(f"{TMP_DIR}/{trial_id}.png")
# 이미지 크기 제한
max_size = 512
if max(input_image.size) > max_size:
ratio = max_size / max(input_image.size)
input_image = input_image.resize(
(int(input_image.size[0] * ratio),
int(input_image.size[1] * ratio)),
Image.LANCZOS
)
if torch.cuda.is_available():
pipeline.to("cuda")
with torch.no_grad():
outputs = pipeline.run(
input_image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": min(ss_sampling_steps, 15),
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": min(slat_sampling_steps, 15),
"cfg_strength": slat_guidance_strength,
}
)
# 비디오 프레임 수 감소
video = render_utils.render_video(outputs['gaussian'][0], num_frames=30)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=30)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = str(uuid.uuid4())
video_path = f"{TMP_DIR}/{trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
if torch.cuda.is_available():
pipeline.to("cpu")
return state, video_path
except Exception as e:
print(f"Error in image_to_3d: {str(e)}")
if torch.cuda.is_available():
pipeline.to("cpu")
raise e
@spaces.GPU
def generate_image_from_text(prompt, height, width, guidance_scale, num_steps):
try:
free_memory() # 시작 전 메모리 정리
# Flux 파이프라인 가져오기
flux_pipe = get_flux_pipe()
if flux_pipe is None:
raise Exception("Failed to load Flux pipeline")
# 이미지 크기 제한
height = min(height, 512)
width = min(width, 512)
# 프롬프트 처리
base_prompt = "wbgmsst, 3D, white background"
translated_prompt = translate_if_korean(prompt)
final_prompt = f"{translated_prompt}, {base_prompt}"
with torch.inference_mode(), torch.cuda.amp.autocast():
output = flux_pipe(
prompt=[final_prompt],
height=height,
width=width,
guidance_scale=min(guidance_scale, 7.5), # 낮은 값으로 제한
num_inference_steps=min(num_steps, 20) # 스텝 수 제한
)
image = output.images[0]
free_memory() # 완료 후 메모리 정리
return image
except Exception as e:
print(f"Error in generate_image_from_text: {str(e)}")
free_memory()
raise e
@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = f"{TMP_DIR}/{trial_id}.glb"
glb.export(glb_path)
return glb_path, glb_path
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
css = """
footer {
visibility: hidden;
}
"""
# Gradio 인터페이스 정의
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
gr.Markdown("""
# Craft3D : 3D Asset Creation & Text-to-Image Generation
""")
with gr.Tabs():
with gr.TabItem("Image to 3D"):
with gr.Row():
with gr.Column():
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
with gr.TabItem("Text to Image"):
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Enter your image description...",
lines=3
)
with gr.Row():
txt2img_height = gr.Slider(256, 1024, value=512, step=64, label="Height")
txt2img_width = gr.Slider(256, 1024, value=512, step=64, label="Width")
with gr.Row():
guidance_scale = gr.Slider(1.0, 20.0, value=7.5, label="Guidance Scale")
num_steps = gr.Slider(1, 50, value=20, label="Number of Steps")
generate_txt2img_btn = gr.Button("Generate Image")
with gr.Column():
txt2img_output = gr.Image(label="Generated Image")
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# Example images
with gr.Row():
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[trial_id, image_prompt],
run_on_click=True,
examples_per_page=32, # 예제 수 감소
cache_examples=False # 예제 캐싱 비활성화는 Examples 컴포넌트에서 설정
)
# Handlers
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt],
)
image_prompt.clear(
lambda: '',
outputs=[trial_id],
)
generate_btn.click(
image_to_3d,
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps,
slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
concurrency_limit=1
).then(
activate_button,
outputs=[extract_glb_btn]
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
concurrency_limit=1
).then(
activate_button,
outputs=[download_glb]
)
generate_txt2img_btn.click(
generate_image_from_text,
inputs=[text_prompt, txt2img_height, txt2img_width, guidance_scale, num_steps],
outputs=[txt2img_output],
concurrency_limit=1,
show_progress=True # 진행 상황 표시
)
if __name__ == "__main__":
import warnings
warnings.filterwarnings('ignore') # 경고 메시지 무시
free_memory()
if not initialize_models():
print("Failed to initialize models")
exit(1)
# Gradio 앱 실행
demo.queue(max_size=1).launch( # 큐 크기를 1로 제한
share=True,
max_threads=1,
show_error=True,
enable_queue=True,
server_port=7860,
server_name="0.0.0.0",
quiet=True # 로그 출력 최소화
)