File size: 8,082 Bytes
40462a0
7aafe2f
 
 
 
 
a30ff0a
7aafe2f
 
a30ff0a
 
39b272a
 
40462a0
7aafe2f
 
 
 
 
 
39b272a
 
 
 
 
 
 
 
 
 
 
40462a0
39b272a
7aafe2f
9d8567b
 
 
 
 
 
 
 
 
 
 
 
a30ff0a
 
 
39b272a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b02e794
39b272a
 
 
 
 
b02e794
 
7aafe2f
b02e794
9d8567b
 
 
 
 
7aafe2f
 
d4545dc
 
 
 
 
 
39b272a
e55ac15
7aafe2f
 
 
39b272a
 
 
7aafe2f
 
9d8567b
 
7aafe2f
 
 
 
9d8567b
7aafe2f
9d8567b
7aafe2f
 
 
39b272a
 
 
 
 
 
 
 
 
 
 
 
7aafe2f
39b272a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7aafe2f
 
9d8567b
7aafe2f
 
 
39b272a
7aafe2f
 
39b272a
7aafe2f
 
39b272a
7aafe2f
 
97d3c4e
7aafe2f
 
 
 
 
 
39b272a
 
 
 
 
 
 
 
7aafe2f
 
39b272a
23fd89e
7aafe2f
 
 
 
 
 
 
39b272a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import gradio as gr
import numpy as np
import random
import spaces
import torch
import time
import os
from diffusers import DiffusionPipeline
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
from transformers import pipeline

# Translation model loading with device specification
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")

# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 1024
DEFAULT_INFERENCE_STEPS = 1
GPU_DURATION = 15  # Reduced from 25 to stay within quota

# Device and model setup with memory optimization
def setup_model():
    dtype = torch.float16
    pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
        "black-forest-labs/FLUX.1-schnell", 
        torch_dtype=dtype,
        device_map="auto"  # Enable model parallelism
    )
    return pipe

pipe = setup_model()

# Menu labels dictionary
english_labels = {
    "Generated Image": "Generated Image",
    "Prompt": "Prompt",
    "Enhance Image": "Enhance Image",
    "Advanced Options": "Advanced Options",
    "Seed": "Seed",
    "Randomize Seed": "Randomize Seed",
    "Width": "Width",
    "Height": "Height",
    "Inference Steps": "Inference Steps",
    "Inspiration Gallery": "Inspiration Gallery"
}

def translate_if_korean(text):
    """Safely translate Korean text to English."""
    try:
        if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
            return translator(text)[0]['translation_text']
        return text
    except Exception as e:
        print(f"Translation error: {e}")
        return text

# Modified inference function with error handling and memory management
@spaces.GPU(duration=GPU_DURATION)
def generate_image(prompt, seed=None, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, 
                  randomize_seed=True, num_inference_steps=DEFAULT_INFERENCE_STEPS):
    try:
        # Input validation
        if not isinstance(seed, (int, type(None))):
            seed = None
            randomize_seed = True
            
        prompt = translate_if_korean(prompt)
        
        if seed is None or randomize_seed:
            seed = random.randint(0, MAX_SEED)
        
        # Ensure valid dimensions
        width = min(max(256, width), MAX_IMAGE_SIZE)
        height = min(max(256, height), MAX_IMAGE_SIZE)
        
        generator = torch.Generator().manual_seed(seed)
        
        start_time = time.time()
        
        with torch.cuda.amp.autocast():  # Enable automatic mixed precision
            for img in pipe.generate_images(
                prompt=prompt,
                guidance_scale=0,
                num_inference_steps=num_inference_steps,
                width=width,
                height=height,
                generator=generator
            ):
                latency = f"Processing Time: {(time.time()-start_time):.2f} seconds"
                
                # Clear CUDA cache after generation
                if torch.cuda.is_available():
                    torch.cuda.empty_cache()
                    
                yield img, seed, latency
                
    except Exception as e:
        print(f"Error in generate_image: {e}")
        # Return a blank image or error message
        yield None, seed, f"Error: {str(e)}"

# Example generator with error handling
def generate_example_image(prompt):
    try:
        return next(generate_image(prompt, randomize_seed=True))
    except Exception as e:
        print(f"Error in example generation: {e}")
        return None, None, f"Error: {str(e)}"

# Example prompts
examples = [
    "๋น„๋„ˆ ์Šˆ๋‹ˆ์ฒผ์˜ ์• ๋‹ˆ๋ฉ”์ด์…˜ ์ผ๋Ÿฌ์ŠคํŠธ๋ ˆ์ด์…˜",
    "A steampunk owl wearing Victorian-era clothing and reading a mechanical book",
    "A floating island made of books with waterfalls of knowledge cascading down",
    "A bioluminescent forest where mushrooms glow like neon signs in a cyberpunk city",
    "An ancient temple being reclaimed by nature, with robots performing archaeology",
    "A cosmic coffee shop where baristas are constellations serving drinks made of stardust"
]

css = """
footer {
    visibility: hidden;
}
"""

# --- Gradio UI with improved error handling ---
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(scale=3):
                result = gr.Image(label=english_labels["Generated Image"], 
                                show_label=False, 
                                interactive=False)
            with gr.Column(scale=1):
                prompt = gr.Text(
                    label=english_labels["Prompt"],
                    placeholder="Describe the image you want to generate...",
                    lines=3,
                    show_label=False,
                    container=False,
                )
                enhanceBtn = gr.Button(f"๐Ÿš€ {english_labels['Enhance Image']}")

                with gr.Column(english_labels["Advanced Options"]):
                    with gr.Row():
                        latency = gr.Text(show_label=False)
                    with gr.Row():
                        # Modified Number component with proper validation
                        seed = gr.Number(
                            label=english_labels["Seed"], 
                            value=42, 
                            precision=0,
                            minimum=0,
                            maximum=MAX_SEED
                        )
                        randomize_seed = gr.Checkbox(
                            label=english_labels["Randomize Seed"], 
                            value=True
                        )
                    with gr.Row():
                        width = gr.Slider(
                            label=english_labels["Width"], 
                            minimum=256, 
                            maximum=MAX_IMAGE_SIZE, 
                            step=32, 
                            value=DEFAULT_WIDTH
                        )
                        height = gr.Slider(
                            label=english_labels["Height"], 
                            minimum=256, 
                            maximum=MAX_IMAGE_SIZE, 
                            step=32, 
                            value=DEFAULT_HEIGHT
                        )
                        num_inference_steps = gr.Slider(
                            label=english_labels["Inference Steps"], 
                            minimum=1, 
                            maximum=4, 
                            step=1, 
                            value=DEFAULT_INFERENCE_STEPS
                        )

        with gr.Row():
            gr.Markdown(f"### ๐ŸŒŸ {english_labels['Inspiration Gallery']}")
        with gr.Row():
            gr.Examples(
                examples=examples,
                fn=generate_example_image,
                inputs=[prompt],
                outputs=[result, seed],
                cache_examples=False
            )

    # Event handling with improved error handling
    enhanceBtn.click(
        fn=generate_image,
        inputs=[prompt, seed, width, height],
        outputs=[result, seed, latency],
        show_progress="hidden",
        show_api=False,
        queue=False
    )

    # Modified event handler with proper input validation
    def validated_generate(*args):
        try:
            return next(generate_image(*args))
        except Exception as e:
            print(f"Error in validated_generate: {e}")
            return None, args[1], f"Error: {str(e)}"

    gr.on(
        triggers=[prompt.input, width.input, height.input, num_inference_steps.input],
        fn=validated_generate,
        inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
        outputs=[result, seed, latency],
        show_progress="hidden",
        show_api=False,
        trigger_mode="always_last",
        queue=False
    )

if __name__ == "__main__":
    demo.launch()