File size: 7,545 Bytes
40462a0
7aafe2f
 
 
 
 
a30ff0a
7aafe2f
 
a30ff0a
 
2e394d9
39b272a
40462a0
2e394d9
7aafe2f
 
 
 
 
2e394d9
39b272a
2e394d9
39b272a
 
 
 
2e394d9
 
39b272a
40462a0
39b272a
7aafe2f
2e394d9
 
 
 
 
 
 
 
 
 
 
 
a30ff0a
 
 
2e394d9
39b272a
 
 
 
 
2e394d9
39b272a
 
2e394d9
39b272a
 
 
 
2e394d9
39b272a
 
 
 
 
 
 
 
 
2e394d9
39b272a
 
 
 
 
 
 
2e394d9
39b272a
 
 
 
 
 
 
 
2e394d9
39b272a
2e394d9
39b272a
 
 
 
 
 
2e394d9
 
39b272a
2e394d9
b02e794
39b272a
 
 
2e394d9
 
b02e794
 
7aafe2f
b02e794
9d8567b
 
 
 
 
7aafe2f
 
2e394d9
d4545dc
 
 
 
 
 
2e394d9
e55ac15
7aafe2f
 
 
2e394d9
39b272a
 
7aafe2f
 
2e394d9
 
7aafe2f
 
 
 
2e394d9
7aafe2f
2e394d9
7aafe2f
 
 
39b272a
2e394d9
39b272a
 
 
 
 
 
2e394d9
39b272a
 
7aafe2f
39b272a
2e394d9
39b272a
 
 
 
 
 
2e394d9
39b272a
 
 
 
 
 
2e394d9
39b272a
 
 
 
 
7aafe2f
 
2e394d9
7aafe2f
 
 
39b272a
7aafe2f
 
39b272a
7aafe2f
 
2e394d9
 
 
 
 
 
 
 
7aafe2f
 
97d3c4e
7aafe2f
 
 
 
 
 
 
 
39b272a
23fd89e
7aafe2f
 
 
 
 
 
 
39b272a
2e394d9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
import numpy as np
import random
import spaces
import torch
import time
import os
from diffusers import DiffusionPipeline
from custom_pipeline import FLUXPipelineWithIntermediateOutputs
from transformers import pipeline

# ๋ฒˆ์—ญ ๋ชจ๋ธ ์„ค์ • (CPU ์‚ฌ์šฉ)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")

# ์ƒ์ˆ˜ ์ •์˜
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 1024
DEFAULT_INFERENCE_STEPS = 1
GPU_DURATION = 15  # GPU ํ• ๋‹น ์‹œ๊ฐ„ ์ถ•์†Œ

# ๋ชจ๋ธ ์„ค์ •
def setup_model():
    dtype = torch.float16
    pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
        "black-forest-labs/FLUX.1-schnell", 
        torch_dtype=dtype
    ).to("cuda")
    return pipe

pipe = setup_model()

# ๋ฉ”๋‰ด ๋ ˆ์ด๋ธ”
labels = {
    "Generated Image": "์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€",
    "Prompt": "ํ”„๋กฌํ”„ํŠธ",
    "Enhance Image": "์ด๋ฏธ์ง€ ํ–ฅ์ƒ",
    "Advanced Options": "๊ณ ๊ธ‰ ์„ค์ •",
    "Seed": "์‹œ๋“œ",
    "Randomize Seed": "๋žœ๋ค ์‹œ๋“œ",
    "Width": "๋„ˆ๋น„",
    "Height": "๋†’์ด",
    "Inference Steps": "์ถ”๋ก  ๋‹จ๊ณ„",
    "Inspiration Gallery": "์˜๊ฐ ๊ฐค๋Ÿฌ๋ฆฌ"
}

def translate_if_korean(text):
    """ํ•œ๊ธ€ ํ…์ŠคํŠธ๋ฅผ ์˜์–ด๋กœ ์•ˆ์ „ํ•˜๊ฒŒ ๋ฒˆ์—ญ"""
    try:
        if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
            return translator(text)[0]['translation_text']
        return text
    except Exception as e:
        print(f"๋ฒˆ์—ญ ์˜ค๋ฅ˜: {e}")
        return text

# ์ด๋ฏธ์ง€ ์ƒ์„ฑ ํ•จ์ˆ˜
@spaces.GPU(duration=GPU_DURATION)
def generate_image(prompt, seed=None, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, 
                  randomize_seed=True, num_inference_steps=DEFAULT_INFERENCE_STEPS):
    try:
        # ์ž…๋ ฅ๊ฐ’ ๊ฒ€์ฆ
        if not isinstance(seed, (int, type(None))):
            seed = None
            randomize_seed = True
            
        prompt = translate_if_korean(prompt)
        
        if seed is None or randomize_seed:
            seed = random.randint(0, MAX_SEED)
        
        # ํฌ๊ธฐ ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ
        width = min(max(256, width), MAX_IMAGE_SIZE)
        height = min(max(256, height), MAX_IMAGE_SIZE)
        
        generator = torch.Generator().manual_seed(seed)
        
        start_time = time.time()
        
        with torch.cuda.amp.autocast():
            for img in pipe.generate_images(
                prompt=prompt,
                guidance_scale=0,
                num_inference_steps=num_inference_steps,
                width=width,
                height=height,
                generator=generator
            ):
                latency = f"์ฒ˜๋ฆฌ ์‹œ๊ฐ„: {(time.time()-start_time):.2f} ์ดˆ"
                
                # CUDA ์บ์‹œ ์ •๋ฆฌ
                if torch.cuda.is_available():
                    torch.cuda.empty_cache()
                    
                yield img, seed, latency
                
    except Exception as e:
        print(f"์ด๋ฏธ์ง€ ์ƒ์„ฑ ์˜ค๋ฅ˜: {e}")
        yield None, seed, f"์˜ค๋ฅ˜: {str(e)}"

# ์˜ˆ์ œ ์ด๋ฏธ์ง€ ์ƒ์„ฑ
def generate_example_image(prompt):
    try:
        return next(generate_image(prompt, randomize_seed=True))
    except Exception as e:
        print(f"์˜ˆ์ œ ์ƒ์„ฑ ์˜ค๋ฅ˜: {e}")
        return None, None, f"์˜ค๋ฅ˜: {str(e)}"

# Example prompts
examples = [
    "๋น„๋„ˆ ์Šˆ๋‹ˆ์ฒผ์˜ ์• ๋‹ˆ๋ฉ”์ด์…˜ ์ผ๋Ÿฌ์ŠคํŠธ๋ ˆ์ด์…˜",
    "A steampunk owl wearing Victorian-era clothing and reading a mechanical book",
    "A floating island made of books with waterfalls of knowledge cascading down",
    "A bioluminescent forest where mushrooms glow like neon signs in a cyberpunk city",
    "An ancient temple being reclaimed by nature, with robots performing archaeology",
    "A cosmic coffee shop where baristas are constellations serving drinks made of stardust"
]


css = """
footer {
    visibility: hidden;
}
"""

# Gradio UI ๊ตฌ์„ฑ
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(scale=3):
                result = gr.Image(label=labels["Generated Image"], 
                                show_label=False, 
                                interactive=False)
            with gr.Column(scale=1):
                prompt = gr.Text(
                    label=labels["Prompt"],
                    placeholder="์ƒ์„ฑํ•˜๊ณ  ์‹ถ์€ ์ด๋ฏธ์ง€๋ฅผ ์„ค๋ช…ํ•ด์ฃผ์„ธ์š”...",
                    lines=3,
                    show_label=False,
                    container=False,
                )
                enhanceBtn = gr.Button(f"๐Ÿš€ {labels['Enhance Image']}")

                with gr.Column(labels["Advanced Options"]):
                    with gr.Row():
                        latency = gr.Text(show_label=False)
                    with gr.Row():
                        seed = gr.Number(
                            label=labels["Seed"], 
                            value=42, 
                            precision=0,
                            minimum=0,
                            maximum=MAX_SEED
                        )
                        randomize_seed = gr.Checkbox(
                            label=labels["Randomize Seed"], 
                            value=True
                        )
                    with gr.Row():
                        width = gr.Slider(
                            label=labels["Width"], 
                            minimum=256, 
                            maximum=MAX_IMAGE_SIZE, 
                            step=32, 
                            value=DEFAULT_WIDTH
                        )
                        height = gr.Slider(
                            label=labels["Height"], 
                            minimum=256, 
                            maximum=MAX_IMAGE_SIZE, 
                            step=32, 
                            value=DEFAULT_HEIGHT
                        )
                        num_inference_steps = gr.Slider(
                            label=labels["Inference Steps"], 
                            minimum=1, 
                            maximum=4, 
                            step=1, 
                            value=DEFAULT_INFERENCE_STEPS
                        )

        with gr.Row():
            gr.Markdown(f"### ๐ŸŒŸ {labels['Inspiration Gallery']}")
        with gr.Row():
            gr.Examples(
                examples=examples,
                fn=generate_example_image,
                inputs=[prompt],
                outputs=[result, seed],
                cache_examples=False
            )

    # ์ด๋ฒคํŠธ ์ฒ˜๋ฆฌ
    def validated_generate(*args):
        try:
            return next(generate_image(*args))
        except Exception as e:
            print(f"๊ฒ€์ฆ ์ƒ์„ฑ ์˜ค๋ฅ˜: {e}")
            return None, args[1], f"์˜ค๋ฅ˜: {str(e)}"

    enhanceBtn.click(
        fn=generate_image,
        inputs=[prompt, seed, width, height],
        outputs=[result, seed, latency],
        show_progress="hidden",
        show_api=False,
        queue=False
    )

    gr.on(
        triggers=[prompt.input, width.input, height.input, num_inference_steps.input],
        fn=validated_generate,
        inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
        outputs=[result, seed, latency],
        show_progress="hidden",
        show_api=False,
        trigger_mode="always_last",
        queue=False
    )

if __name__ == "__main__":
    demo.launch()