Spaces:
Building
on
L40S
Building
on
L40S
Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,31 @@ logging.basicConfig(
|
|
20 |
]
|
21 |
)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def analyze_lyrics(lyrics, repeat_chorus=2):
|
24 |
lines = [line.strip() for line in lyrics.split('\n') if line.strip()]
|
25 |
|
@@ -36,84 +61,64 @@ def analyze_lyrics(lyrics, repeat_chorus=2):
|
|
36 |
'chorus': [],
|
37 |
'bridge': []
|
38 |
}
|
39 |
-
|
40 |
-
# λ§μ§λ§ μΉμ
μ μΆμ νκΈ° μν λ³μ
|
41 |
-
last_section_start = 0
|
42 |
|
43 |
-
for
|
44 |
lower_line = line.lower()
|
45 |
if '[verse]' in lower_line:
|
46 |
-
if current_section: # μ΄μ μΉμ
μ λΌμΈλ€ μ μ₯
|
47 |
-
section_lines[current_section].extend(lines[last_section_start:i])
|
48 |
current_section = 'verse'
|
49 |
sections['verse'] += 1
|
50 |
-
|
51 |
elif '[chorus]' in lower_line:
|
52 |
-
if current_section:
|
53 |
-
section_lines[current_section].extend(lines[last_section_start:i])
|
54 |
current_section = 'chorus'
|
55 |
sections['chorus'] += 1
|
56 |
-
|
57 |
elif '[bridge]' in lower_line:
|
58 |
-
if current_section:
|
59 |
-
section_lines[current_section].extend(lines[last_section_start:i])
|
60 |
current_section = 'bridge'
|
61 |
sections['bridge'] += 1
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
section_lines[current_section].extend(lines[last_section_start:])
|
67 |
|
68 |
-
# μ½λ¬μ€ λ°λ³΅ μ²λ¦¬
|
69 |
if sections['chorus'] == 1 and repeat_chorus > 1:
|
70 |
chorus_block = section_lines['chorus'][:]
|
71 |
for _ in range(repeat_chorus - 1):
|
72 |
section_lines['chorus'].extend(chorus_block)
|
73 |
|
74 |
-
# μ 체 λΌμΈ μ μ¬κ³μ°
|
75 |
new_total_lines = sum(len(section_lines[sec]) for sec in section_lines)
|
76 |
|
77 |
return sections, (sections['verse'] + sections['chorus'] + sections['bridge']), new_total_lines, section_lines
|
78 |
|
79 |
-
|
80 |
def calculate_generation_params(lyrics):
|
81 |
sections, total_sections, total_lines, section_lines = analyze_lyrics(lyrics)
|
82 |
|
83 |
-
# κΈ°λ³Έ μκ° κ³μ° (μ΄ λ¨μ)
|
84 |
time_per_line = {
|
85 |
-
'verse': 4,
|
86 |
-
'chorus': 6,
|
87 |
-
'bridge': 5
|
88 |
}
|
89 |
|
90 |
-
# κ° μΉμ
λ³ μμ μκ° κ³μ°
|
91 |
section_durations = {}
|
92 |
for section_type in ['verse', 'chorus', 'bridge']:
|
93 |
-
# κ° μΉμ
μ λΌμΈ μμ ν΄λΉ μΉμ
μ μκ°μ κ³±ν¨
|
94 |
if isinstance(section_lines[section_type], list):
|
95 |
section_durations[section_type] = len(section_lines[section_type]) * time_per_line[section_type]
|
96 |
else:
|
97 |
section_durations[section_type] = section_lines[section_type] * time_per_line[section_type]
|
98 |
|
99 |
-
# μ 체 μκ° κ³μ°
|
100 |
total_duration = sum(duration for duration in section_durations.values())
|
101 |
-
total_duration = max(60, total_duration)
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
tokens_per_line = 200 # μ€λΉ ν ν° μ
|
106 |
|
107 |
total_tokens = base_tokens + (total_lines * tokens_per_line)
|
108 |
|
109 |
-
# μΉμ
κΈ°λ° μΈκ·Έλ¨ΌνΈ μ κ³μ°
|
110 |
if sections['chorus'] > 0:
|
111 |
-
num_segments = 3
|
112 |
else:
|
113 |
-
num_segments = 2
|
114 |
|
115 |
-
|
116 |
-
max_tokens = min(8000, total_tokens) # μ΅λ 8000 ν ν°μΌλ‘ μ ν
|
117 |
|
118 |
return {
|
119 |
'max_tokens': max_tokens,
|
@@ -125,43 +130,15 @@ def calculate_generation_params(lyrics):
|
|
125 |
'has_chorus': sections['chorus'] > 0
|
126 |
}
|
127 |
|
128 |
-
def get_audio_duration(file_path):
|
129 |
-
try:
|
130 |
-
import librosa
|
131 |
-
duration = librosa.get_duration(path=file_path)
|
132 |
-
return duration
|
133 |
-
except Exception as e:
|
134 |
-
logging.error(f"Failed to get audio duration: {e}")
|
135 |
-
return None
|
136 |
-
|
137 |
-
# μΈμ΄ κ°μ§ λ° λͺ¨λΈ μ ν ν¨μ
|
138 |
def detect_and_select_model(text):
|
139 |
-
if re.search(r'[\u3131-\u318E\uAC00-\uD7A3]', text):
|
140 |
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
|
141 |
-
elif re.search(r'[\u4e00-\u9fff]', text):
|
142 |
return "m-a-p/YuE-s1-7B-anneal-zh-cot"
|
143 |
-
elif re.search(r'[\u3040-\u309F\u30A0-\u30FF]', text):
|
144 |
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
|
145 |
-
else: # μμ΄/κΈ°ν
|
146 |
-
return "m-a-p/YuE-s1-7B-anneal-en-cot"
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
# GPU μ€μ μ΅μ ν
|
151 |
-
def optimize_gpu_settings():
|
152 |
-
if torch.cuda.is_available():
|
153 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
154 |
-
torch.backends.cudnn.benchmark = True
|
155 |
-
torch.backends.cudnn.deterministic = False
|
156 |
-
torch.backends.cudnn.enabled = True
|
157 |
-
|
158 |
-
torch.cuda.empty_cache()
|
159 |
-
torch.cuda.set_device(0)
|
160 |
-
|
161 |
-
logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
162 |
-
logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
|
163 |
else:
|
164 |
-
|
165 |
|
166 |
def install_flash_attn():
|
167 |
try:
|
@@ -183,17 +160,13 @@ def install_flash_attn():
|
|
183 |
except ImportError:
|
184 |
logging.info("Installing flash-attn...")
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
return True
|
194 |
-
except subprocess.CalledProcessError:
|
195 |
-
logging.warning("Failed to install flash-attn via pip, skipping...")
|
196 |
-
return False
|
197 |
|
198 |
except Exception as e:
|
199 |
logging.warning(f"Failed to install flash-attn: {e}")
|
@@ -201,19 +174,27 @@ def install_flash_attn():
|
|
201 |
|
202 |
def initialize_system():
|
203 |
optimize_gpu_settings()
|
204 |
-
has_flash_attn = install_flash_attn()
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
try:
|
219 |
os.chdir("./inference")
|
@@ -222,7 +203,7 @@ def initialize_system():
|
|
222 |
logging.error(f"Directory error: {e}")
|
223 |
raise
|
224 |
|
225 |
-
@lru_cache(maxsize=
|
226 |
def get_cached_file_path(content_hash, prefix):
|
227 |
return create_temp_file(content_hash, prefix)
|
228 |
|
@@ -254,84 +235,46 @@ def get_last_mp3_file(output_dir):
|
|
254 |
mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
|
255 |
return mp3_files_with_path[0]
|
256 |
|
257 |
-
def
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
tokens_per_segment = params['max_tokens'] // params['num_segments']
|
266 |
-
|
267 |
-
model_config = {
|
268 |
-
"m-a-p/YuE-s1-7B-anneal-en-cot": {
|
269 |
-
"max_tokens": params['max_tokens'],
|
270 |
-
"temperature": 0.8,
|
271 |
-
"batch_size": 8,
|
272 |
-
"num_segments": params['num_segments'],
|
273 |
-
"estimated_duration": params['estimated_duration']
|
274 |
-
},
|
275 |
-
"m-a-p/YuE-s1-7B-anneal-jp-kr-cot": {
|
276 |
-
"max_tokens": params['max_tokens'],
|
277 |
-
"temperature": 0.7,
|
278 |
-
"batch_size": 8,
|
279 |
-
"num_segments": params['num_segments'],
|
280 |
-
"estimated_duration": params['estimated_duration']
|
281 |
-
},
|
282 |
-
"m-a-p/YuE-s1-7B-anneal-zh-cot": {
|
283 |
-
"max_tokens": params['max_tokens'],
|
284 |
-
"temperature": 0.7,
|
285 |
-
"batch_size": 8,
|
286 |
-
"num_segments": params['num_segments'],
|
287 |
-
"estimated_duration": params['estimated_duration']
|
288 |
-
}
|
289 |
-
}
|
290 |
-
|
291 |
-
# μ½λ¬μ€κ° μλ κ²½μ° ν ν° μ μ¦κ°
|
292 |
-
if has_chorus:
|
293 |
-
for config in model_config.values():
|
294 |
-
config['max_tokens'] = int(config['max_tokens'] * 1.5) # 50% λ λ§μ ν ν° ν λΉ
|
295 |
-
|
296 |
-
return model_path, model_config[model_path], params
|
297 |
|
298 |
def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
299 |
genre_txt_path = None
|
300 |
lyrics_txt_path = None
|
301 |
|
302 |
try:
|
303 |
-
# λͺ¨λΈ μ ν λ° μ€μ
|
304 |
model_path, config, params = optimize_model_selection(lyrics_txt_content, genre_txt_content)
|
305 |
logging.info(f"Selected model: {model_path}")
|
306 |
logging.info(f"Lyrics analysis: {params}")
|
307 |
|
308 |
-
# μ½λ¬μ€ μΉμ
νμΈ λ° λ‘κΉ
|
309 |
has_chorus = params['sections']['chorus'] > 0
|
310 |
estimated_duration = params.get('estimated_duration', 90)
|
311 |
-
|
312 |
-
# μΈκ·Έλ¨ΌνΈ μ
|
313 |
if has_chorus:
|
314 |
-
actual_num_segments = min(4, actual_num_segments + 1) # μΈκ·Έλ¨ΌνΈ νλ μΆκ°
|
315 |
-
actual_max_tokens = min(8000, int(config['max_tokens'] * 1.3)) # 30% μ¦κ°
|
316 |
-
else:
|
317 |
-
actual_num_segments = min(3, actual_num_segments + 1)
|
318 |
actual_max_tokens = min(8000, int(config['max_tokens'] * 1.2))
|
|
|
|
|
|
|
|
|
319 |
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
logging.info(f"Estimated duration: {estimated_duration} seconds")
|
324 |
logging.info(f"Has chorus sections: {has_chorus}")
|
325 |
logging.info(f"Using segments: {actual_num_segments}, tokens: {actual_max_tokens}")
|
326 |
|
327 |
-
# μμ νμΌ μμ±
|
328 |
genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_")
|
329 |
lyrics_txt_path = create_temp_file(lyrics_txt_content, prefix="lyrics_")
|
330 |
|
331 |
output_dir = "./output"
|
332 |
os.makedirs(output_dir, exist_ok=True)
|
333 |
empty_output_folder(output_dir)
|
334 |
-
|
335 |
command = [
|
336 |
"python", "infer.py",
|
337 |
"--stage1_model", model_path,
|
@@ -339,19 +282,15 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
339 |
"--genre_txt", genre_txt_path,
|
340 |
"--lyrics_txt", lyrics_txt_path,
|
341 |
"--run_n_segments", str(actual_num_segments),
|
342 |
-
"--stage2_batch_size", "
|
343 |
"--output_dir", output_dir,
|
344 |
"--cuda_idx", "0",
|
345 |
-
"--max_new_tokens", str(actual_max_tokens)
|
|
|
|
|
|
|
346 |
]
|
347 |
|
348 |
-
# GPU μ€μ
|
349 |
-
if torch.cuda.is_available():
|
350 |
-
command.append("--disable_offload_model")
|
351 |
-
# GPU μ€μ
|
352 |
-
|
353 |
-
|
354 |
-
# CUDA νκ²½ λ³μ μ€μ
|
355 |
env = os.environ.copy()
|
356 |
if torch.cuda.is_available():
|
357 |
env.update({
|
@@ -359,17 +298,11 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
359 |
"CUDA_HOME": "/usr/local/cuda",
|
360 |
"PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}",
|
361 |
"LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}",
|
362 |
-
"PYTORCH_CUDA_ALLOC_CONF":
|
|
|
|
|
363 |
})
|
364 |
|
365 |
-
# transformers μΊμ λ§μ΄κ·Έλ μ΄μ
μ²λ¦¬
|
366 |
-
try:
|
367 |
-
from transformers.utils import move_cache
|
368 |
-
move_cache()
|
369 |
-
except Exception as e:
|
370 |
-
logging.warning(f"Cache migration warning (non-critical): {e}")
|
371 |
-
|
372 |
-
# λͺ
λ Ή μ€ν
|
373 |
process = subprocess.run(
|
374 |
command,
|
375 |
env=env,
|
@@ -378,7 +311,6 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
378 |
text=True
|
379 |
)
|
380 |
|
381 |
-
# μ€ν κ²°κ³Ό λ‘κΉ
|
382 |
logging.info(f"Command output: {process.stdout}")
|
383 |
if process.stderr:
|
384 |
logging.error(f"Command error: {process.stderr}")
|
@@ -388,7 +320,6 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
388 |
logging.error(f"Command: {' '.join(command)}")
|
389 |
raise RuntimeError(f"Inference failed: {process.stderr}")
|
390 |
|
391 |
-
# κ²°κ³Ό μ²λ¦¬
|
392 |
last_mp3 = get_last_mp3_file(output_dir)
|
393 |
if last_mp3:
|
394 |
try:
|
@@ -398,7 +329,6 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
398 |
logging.info(f"Audio duration: {duration:.2f} seconds")
|
399 |
logging.info(f"Expected duration: {estimated_duration} seconds")
|
400 |
|
401 |
-
# μμ±λ μμ
μ΄ λ무 짧μ κ²½μ° κ²½κ³
|
402 |
if duration < estimated_duration * 0.8:
|
403 |
logging.warning(f"Generated audio is shorter than expected: {duration:.2f}s < {estimated_duration:.2f}s")
|
404 |
except Exception as e:
|
@@ -412,27 +342,55 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
412 |
logging.error(f"Inference error: {e}")
|
413 |
raise
|
414 |
finally:
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
|
430 |
def main():
|
431 |
-
# Gradio μΈν°νμ΄μ€
|
432 |
with gr.Blocks() as demo:
|
433 |
with gr.Column():
|
434 |
gr.Markdown("# Open SUNO: Full-Song Generation (Multi-Language Support)")
|
435 |
-
|
436 |
|
437 |
with gr.Row():
|
438 |
with gr.Column():
|
@@ -469,10 +427,8 @@ def main():
|
|
469 |
submit_btn = gr.Button("Generate Music", variant="primary")
|
470 |
music_out = gr.Audio(label="Generated Audio")
|
471 |
|
472 |
-
# λ€κ΅μ΄ μμ
|
473 |
gr.Examples(
|
474 |
examples=[
|
475 |
-
# μμ΄ μμ
|
476 |
[
|
477 |
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
|
478 |
"""[verse]
|
@@ -497,36 +453,27 @@ Guiding me back homeward, making my heart rejoice
|
|
497 |
Don't let this moment fade, hold me close tonight
|
498 |
With you here beside me, everything's alright
|
499 |
Can't imagine life alone, don't want to let you go
|
500 |
-
Stay with me forever, let our love just flow
|
501 |
-
"""
|
502 |
],
|
503 |
-
# νκ΅μ΄ μμ
|
504 |
[
|
505 |
"K-pop bright energetic synth dance electronic",
|
506 |
"""[verse]
|
507 |
μΈμ κ° λ§μ£Όν λλΉ μμμ
|
508 |
-
μ°λ¦° μλ‘λ₯Ό μμ보μμ§
|
509 |
|
510 |
[chorus]
|
511 |
λ€μ ν λ² λ΄κ² λ§ν΄μ€
|
512 |
-
λμ μ§μ¬μ μ¨κΈ°μ§ λ§μ μ€
|
513 |
|
514 |
[verse]
|
515 |
μ΄λμ΄ λ°€μ μ§λ λλ§λ€
|
516 |
-
λμ λͺ©μ리λ₯Ό λ μ¬λ €
|
517 |
|
518 |
[chorus]
|
519 |
λ€μ ν λ² λ΄κ² λ§ν΄μ€
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
"""
|
524 |
]
|
525 |
],
|
526 |
inputs=[genre_txt, lyrics_txt]
|
527 |
)
|
528 |
|
529 |
-
# μμ€ν
μ΄κΈ°ν
|
530 |
initialize_system()
|
531 |
|
532 |
def update_info(lyrics):
|
@@ -540,9 +487,6 @@ Stay with me forever, let our love just flow
|
|
540 |
f"Verses: {sections['verse']}, Chorus: {sections['chorus']} (Expected full length including chorus)"
|
541 |
)
|
542 |
|
543 |
-
|
544 |
-
|
545 |
-
# μ΄λ²€νΈ νΈλ€λ¬
|
546 |
lyrics_txt.change(
|
547 |
fn=update_info,
|
548 |
inputs=[lyrics_txt],
|
@@ -565,5 +509,8 @@ if __name__ == "__main__":
|
|
565 |
share=True,
|
566 |
show_api=True,
|
567 |
show_error=True,
|
568 |
-
max_threads=
|
569 |
-
|
|
|
|
|
|
|
|
20 |
]
|
21 |
)
|
22 |
|
23 |
+
def optimize_gpu_settings():
|
24 |
+
if torch.cuda.is_available():
|
25 |
+
# GPU λ©λͺ¨λ¦¬ κ΄λ¦¬ μ΅μ ν
|
26 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
27 |
+
torch.backends.cudnn.benchmark = True
|
28 |
+
torch.backends.cudnn.enabled = True
|
29 |
+
torch.backends.cudnn.deterministic = False
|
30 |
+
|
31 |
+
# L40Sμ μ΅μ νλ λ©λͺ¨λ¦¬ μ€μ
|
32 |
+
torch.cuda.empty_cache()
|
33 |
+
torch.cuda.set_device(0)
|
34 |
+
|
35 |
+
# CUDA μ€νΈλ¦Ό μ΅μ ν
|
36 |
+
torch.cuda.Stream(0)
|
37 |
+
|
38 |
+
# λ©λͺ¨λ¦¬ ν λΉ μ΅μ ν
|
39 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
40 |
+
|
41 |
+
logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
42 |
+
logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
|
43 |
+
|
44 |
+
# L40S νΉν μ€μ
|
45 |
+
if 'L40S' in torch.cuda.get_device_name(0):
|
46 |
+
torch.cuda.set_per_process_memory_fraction(0.95)
|
47 |
+
|
48 |
def analyze_lyrics(lyrics, repeat_chorus=2):
|
49 |
lines = [line.strip() for line in lyrics.split('\n') if line.strip()]
|
50 |
|
|
|
61 |
'chorus': [],
|
62 |
'bridge': []
|
63 |
}
|
|
|
|
|
|
|
64 |
|
65 |
+
for line in lines:
|
66 |
lower_line = line.lower()
|
67 |
if '[verse]' in lower_line:
|
|
|
|
|
68 |
current_section = 'verse'
|
69 |
sections['verse'] += 1
|
70 |
+
continue
|
71 |
elif '[chorus]' in lower_line:
|
|
|
|
|
72 |
current_section = 'chorus'
|
73 |
sections['chorus'] += 1
|
74 |
+
continue
|
75 |
elif '[bridge]' in lower_line:
|
|
|
|
|
76 |
current_section = 'bridge'
|
77 |
sections['bridge'] += 1
|
78 |
+
continue
|
79 |
|
80 |
+
if current_section:
|
81 |
+
section_lines[current_section].append(line)
|
|
|
82 |
|
|
|
83 |
if sections['chorus'] == 1 and repeat_chorus > 1:
|
84 |
chorus_block = section_lines['chorus'][:]
|
85 |
for _ in range(repeat_chorus - 1):
|
86 |
section_lines['chorus'].extend(chorus_block)
|
87 |
|
|
|
88 |
new_total_lines = sum(len(section_lines[sec]) for sec in section_lines)
|
89 |
|
90 |
return sections, (sections['verse'] + sections['chorus'] + sections['bridge']), new_total_lines, section_lines
|
91 |
|
|
|
92 |
def calculate_generation_params(lyrics):
|
93 |
sections, total_sections, total_lines, section_lines = analyze_lyrics(lyrics)
|
94 |
|
|
|
95 |
time_per_line = {
|
96 |
+
'verse': 4,
|
97 |
+
'chorus': 6,
|
98 |
+
'bridge': 5
|
99 |
}
|
100 |
|
|
|
101 |
section_durations = {}
|
102 |
for section_type in ['verse', 'chorus', 'bridge']:
|
|
|
103 |
if isinstance(section_lines[section_type], list):
|
104 |
section_durations[section_type] = len(section_lines[section_type]) * time_per_line[section_type]
|
105 |
else:
|
106 |
section_durations[section_type] = section_lines[section_type] * time_per_line[section_type]
|
107 |
|
|
|
108 |
total_duration = sum(duration for duration in section_durations.values())
|
109 |
+
total_duration = max(60, total_duration)
|
110 |
|
111 |
+
base_tokens = 3000
|
112 |
+
tokens_per_line = 200
|
|
|
113 |
|
114 |
total_tokens = base_tokens + (total_lines * tokens_per_line)
|
115 |
|
|
|
116 |
if sections['chorus'] > 0:
|
117 |
+
num_segments = 3
|
118 |
else:
|
119 |
+
num_segments = 2
|
120 |
|
121 |
+
max_tokens = min(8000, total_tokens)
|
|
|
122 |
|
123 |
return {
|
124 |
'max_tokens': max_tokens,
|
|
|
130 |
'has_chorus': sections['chorus'] > 0
|
131 |
}
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
def detect_and_select_model(text):
|
134 |
+
if re.search(r'[\u3131-\u318E\uAC00-\uD7A3]', text):
|
135 |
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
|
136 |
+
elif re.search(r'[\u4e00-\u9fff]', text):
|
137 |
return "m-a-p/YuE-s1-7B-anneal-zh-cot"
|
138 |
+
elif re.search(r'[\u3040-\u309F\u30A0-\u30FF]', text):
|
139 |
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
else:
|
141 |
+
return "m-a-p/YuE-s1-7B-anneal-en-cot"
|
142 |
|
143 |
def install_flash_attn():
|
144 |
try:
|
|
|
160 |
except ImportError:
|
161 |
logging.info("Installing flash-attn...")
|
162 |
|
163 |
+
subprocess.run(
|
164 |
+
["pip", "install", "flash-attn", "--no-build-isolation"],
|
165 |
+
check=True,
|
166 |
+
capture_output=True
|
167 |
+
)
|
168 |
+
logging.info("flash-attn installed successfully!")
|
169 |
+
return True
|
|
|
|
|
|
|
|
|
170 |
|
171 |
except Exception as e:
|
172 |
logging.warning(f"Failed to install flash-attn: {e}")
|
|
|
174 |
|
175 |
def initialize_system():
|
176 |
optimize_gpu_settings()
|
|
|
177 |
|
178 |
+
with ThreadPoolExecutor(max_workers=4) as executor:
|
179 |
+
futures = []
|
180 |
+
|
181 |
+
futures.append(executor.submit(install_flash_attn))
|
182 |
+
|
183 |
+
from huggingface_hub import snapshot_download
|
184 |
+
|
185 |
+
folder_path = './inference/xcodec_mini_infer'
|
186 |
+
os.makedirs(folder_path, exist_ok=True)
|
187 |
+
logging.info(f"Created folder at: {folder_path}")
|
188 |
+
|
189 |
+
futures.append(executor.submit(
|
190 |
+
snapshot_download,
|
191 |
+
repo_id="m-a-p/xcodec_mini_infer",
|
192 |
+
local_dir="./inference/xcodec_mini_infer",
|
193 |
+
resume_download=True
|
194 |
+
))
|
195 |
+
|
196 |
+
for future in futures:
|
197 |
+
future.result()
|
198 |
|
199 |
try:
|
200 |
os.chdir("./inference")
|
|
|
203 |
logging.error(f"Directory error: {e}")
|
204 |
raise
|
205 |
|
206 |
+
@lru_cache(maxsize=100)
|
207 |
def get_cached_file_path(content_hash, prefix):
|
208 |
return create_temp_file(content_hash, prefix)
|
209 |
|
|
|
235 |
mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
|
236 |
return mp3_files_with_path[0]
|
237 |
|
238 |
+
def get_audio_duration(file_path):
|
239 |
+
try:
|
240 |
+
import librosa
|
241 |
+
duration = librosa.get_duration(path=file_path)
|
242 |
+
return duration
|
243 |
+
except Exception as e:
|
244 |
+
logging.error(f"Failed to get audio duration: {e}")
|
245 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
248 |
genre_txt_path = None
|
249 |
lyrics_txt_path = None
|
250 |
|
251 |
try:
|
|
|
252 |
model_path, config, params = optimize_model_selection(lyrics_txt_content, genre_txt_content)
|
253 |
logging.info(f"Selected model: {model_path}")
|
254 |
logging.info(f"Lyrics analysis: {params}")
|
255 |
|
|
|
256 |
has_chorus = params['sections']['chorus'] > 0
|
257 |
estimated_duration = params.get('estimated_duration', 90)
|
258 |
+
|
259 |
+
# μΈκ·Έλ¨ΌνΈ λ° ν ν° μ μ€μ
|
260 |
if has_chorus:
|
|
|
|
|
|
|
|
|
261 |
actual_max_tokens = min(8000, int(config['max_tokens'] * 1.2))
|
262 |
+
actual_num_segments = min(4, params['num_segments'] + 1)
|
263 |
+
else:
|
264 |
+
actual_max_tokens = config['max_tokens']
|
265 |
+
actual_num_segments = params['num_segments']
|
266 |
|
|
|
|
|
|
|
267 |
logging.info(f"Estimated duration: {estimated_duration} seconds")
|
268 |
logging.info(f"Has chorus sections: {has_chorus}")
|
269 |
logging.info(f"Using segments: {actual_num_segments}, tokens: {actual_max_tokens}")
|
270 |
|
|
|
271 |
genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_")
|
272 |
lyrics_txt_path = create_temp_file(lyrics_txt_content, prefix="lyrics_")
|
273 |
|
274 |
output_dir = "./output"
|
275 |
os.makedirs(output_dir, exist_ok=True)
|
276 |
empty_output_folder(output_dir)
|
277 |
+
|
278 |
command = [
|
279 |
"python", "infer.py",
|
280 |
"--stage1_model", model_path,
|
|
|
282 |
"--genre_txt", genre_txt_path,
|
283 |
"--lyrics_txt", lyrics_txt_path,
|
284 |
"--run_n_segments", str(actual_num_segments),
|
285 |
+
"--stage2_batch_size", "16",
|
286 |
"--output_dir", output_dir,
|
287 |
"--cuda_idx", "0",
|
288 |
+
"--max_new_tokens", str(actual_max_tokens),
|
289 |
+
"--use_flash_attention", "True",
|
290 |
+
"--use_bettertransformer", "True",
|
291 |
+
"--use_compile", "True"
|
292 |
]
|
293 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
env = os.environ.copy()
|
295 |
if torch.cuda.is_available():
|
296 |
env.update({
|
|
|
298 |
"CUDA_HOME": "/usr/local/cuda",
|
299 |
"PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}",
|
300 |
"LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}",
|
301 |
+
"PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512",
|
302 |
+
"CUDA_LAUNCH_BLOCKING": "0",
|
303 |
+
"TORCH_DISTRIBUTED_DEBUG": "DETAIL"
|
304 |
})
|
305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
process = subprocess.run(
|
307 |
command,
|
308 |
env=env,
|
|
|
311 |
text=True
|
312 |
)
|
313 |
|
|
|
314 |
logging.info(f"Command output: {process.stdout}")
|
315 |
if process.stderr:
|
316 |
logging.error(f"Command error: {process.stderr}")
|
|
|
320 |
logging.error(f"Command: {' '.join(command)}")
|
321 |
raise RuntimeError(f"Inference failed: {process.stderr}")
|
322 |
|
|
|
323 |
last_mp3 = get_last_mp3_file(output_dir)
|
324 |
if last_mp3:
|
325 |
try:
|
|
|
329 |
logging.info(f"Audio duration: {duration:.2f} seconds")
|
330 |
logging.info(f"Expected duration: {estimated_duration} seconds")
|
331 |
|
|
|
332 |
if duration < estimated_duration * 0.8:
|
333 |
logging.warning(f"Generated audio is shorter than expected: {duration:.2f}s < {estimated_duration:.2f}s")
|
334 |
except Exception as e:
|
|
|
342 |
logging.error(f"Inference error: {e}")
|
343 |
raise
|
344 |
finally:
|
345 |
+
for path in [genre_txt_path, lyrics_txt_path]:
|
346 |
+
if path and os.path.exists(path):
|
347 |
+
try:
|
348 |
+
os.remove(path)
|
349 |
+
logging.debug(f"Removed temporary file: {path}")
|
350 |
+
except Exception as e:
|
351 |
+
logging.warning(f"Failed to remove temporary file {path}: {e}")
|
352 |
+
|
353 |
+
def optimize_model_selection(lyrics, genre):
|
354 |
+
model_path = detect_and_select_model(lyrics)
|
355 |
+
params = calculate_generation_params(lyrics)
|
356 |
+
|
357 |
+
has_chorus = params['sections']['chorus'] > 0
|
358 |
+
tokens_per_segment = params['max_tokens'] // params['num_segments']
|
359 |
+
|
360 |
+
model_config = {
|
361 |
+
"m-a-p/YuE-s1-7B-anneal-en-cot": {
|
362 |
+
"max_tokens": params['max_tokens'],
|
363 |
+
"temperature": 0.8,
|
364 |
+
"batch_size": 16,
|
365 |
+
"num_segments": params['num_segments'],
|
366 |
+
"estimated_duration": params['estimated_duration']
|
367 |
+
},
|
368 |
+
"m-a-p/YuE-s1-7B-anneal-jp-kr-cot": {
|
369 |
+
"max_tokens": params['max_tokens'],
|
370 |
+
"temperature": 0.7,
|
371 |
+
"batch_size": 16,
|
372 |
+
"num_segments": params['num_segments'],
|
373 |
+
"estimated_duration": params['estimated_duration']
|
374 |
+
},
|
375 |
+
"m-a-p/YuE-s1-7B-anneal-zh-cot": {
|
376 |
+
"max_tokens": params['max_tokens'],
|
377 |
+
"temperature": 0.7,
|
378 |
+
"batch_size": 16,
|
379 |
+
"num_segments": params['num_segments'],
|
380 |
+
"estimated_duration": params['estimated_duration']
|
381 |
+
}
|
382 |
+
}
|
383 |
+
|
384 |
+
if has_chorus:
|
385 |
+
for config in model_config.values():
|
386 |
+
config['max_tokens'] = int(config['max_tokens'] * 1.5)
|
387 |
+
|
388 |
+
return model_path, model_config[model_path], params
|
389 |
|
390 |
def main():
|
|
|
391 |
with gr.Blocks() as demo:
|
392 |
with gr.Column():
|
393 |
gr.Markdown("# Open SUNO: Full-Song Generation (Multi-Language Support)")
|
|
|
394 |
|
395 |
with gr.Row():
|
396 |
with gr.Column():
|
|
|
427 |
submit_btn = gr.Button("Generate Music", variant="primary")
|
428 |
music_out = gr.Audio(label="Generated Audio")
|
429 |
|
|
|
430 |
gr.Examples(
|
431 |
examples=[
|
|
|
432 |
[
|
433 |
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
|
434 |
"""[verse]
|
|
|
453 |
Don't let this moment fade, hold me close tonight
|
454 |
With you here beside me, everything's alright
|
455 |
Can't imagine life alone, don't want to let you go
|
456 |
+
Stay with me forever, let our love just flow"""
|
|
|
457 |
],
|
|
|
458 |
[
|
459 |
"K-pop bright energetic synth dance electronic",
|
460 |
"""[verse]
|
461 |
μΈμ κ° λ§μ£Όν λλΉ μμμ
|
|
|
462 |
|
463 |
[chorus]
|
464 |
λ€μ ν λ² λ΄κ² λ§ν΄μ€
|
|
|
465 |
|
466 |
[verse]
|
467 |
μ΄λμ΄ λ°€μ μ§λ λλ§λ€
|
|
|
468 |
|
469 |
[chorus]
|
470 |
λ€μ ν λ² λ΄κ² λ§ν΄μ€
|
471 |
+
"""
|
|
|
|
|
|
|
472 |
]
|
473 |
],
|
474 |
inputs=[genre_txt, lyrics_txt]
|
475 |
)
|
476 |
|
|
|
477 |
initialize_system()
|
478 |
|
479 |
def update_info(lyrics):
|
|
|
487 |
f"Verses: {sections['verse']}, Chorus: {sections['chorus']} (Expected full length including chorus)"
|
488 |
)
|
489 |
|
|
|
|
|
|
|
490 |
lyrics_txt.change(
|
491 |
fn=update_info,
|
492 |
inputs=[lyrics_txt],
|
|
|
509 |
share=True,
|
510 |
show_api=True,
|
511 |
show_error=True,
|
512 |
+
max_threads=8,
|
513 |
+
enable_queue=True,
|
514 |
+
cache_examples=True,
|
515 |
+
analytics_enabled=False
|
516 |
+
)
|