Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,6 +20,31 @@ logging.basicConfig(
|
|
| 20 |
]
|
| 21 |
)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def analyze_lyrics(lyrics, repeat_chorus=2):
|
| 24 |
lines = [line.strip() for line in lyrics.split('\n') if line.strip()]
|
| 25 |
|
|
@@ -36,84 +61,64 @@ def analyze_lyrics(lyrics, repeat_chorus=2):
|
|
| 36 |
'chorus': [],
|
| 37 |
'bridge': []
|
| 38 |
}
|
| 39 |
-
|
| 40 |
-
# λ§μ§λ§ μΉμ
μ μΆμ νκΈ° μν λ³μ
|
| 41 |
-
last_section_start = 0
|
| 42 |
|
| 43 |
-
for
|
| 44 |
lower_line = line.lower()
|
| 45 |
if '[verse]' in lower_line:
|
| 46 |
-
if current_section: # μ΄μ μΉμ
μ λΌμΈλ€ μ μ₯
|
| 47 |
-
section_lines[current_section].extend(lines[last_section_start:i])
|
| 48 |
current_section = 'verse'
|
| 49 |
sections['verse'] += 1
|
| 50 |
-
|
| 51 |
elif '[chorus]' in lower_line:
|
| 52 |
-
if current_section:
|
| 53 |
-
section_lines[current_section].extend(lines[last_section_start:i])
|
| 54 |
current_section = 'chorus'
|
| 55 |
sections['chorus'] += 1
|
| 56 |
-
|
| 57 |
elif '[bridge]' in lower_line:
|
| 58 |
-
if current_section:
|
| 59 |
-
section_lines[current_section].extend(lines[last_section_start:i])
|
| 60 |
current_section = 'bridge'
|
| 61 |
sections['bridge'] += 1
|
| 62 |
-
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
section_lines[current_section].extend(lines[last_section_start:])
|
| 67 |
|
| 68 |
-
# μ½λ¬μ€ λ°λ³΅ μ²λ¦¬
|
| 69 |
if sections['chorus'] == 1 and repeat_chorus > 1:
|
| 70 |
chorus_block = section_lines['chorus'][:]
|
| 71 |
for _ in range(repeat_chorus - 1):
|
| 72 |
section_lines['chorus'].extend(chorus_block)
|
| 73 |
|
| 74 |
-
# μ 체 λΌμΈ μ μ¬κ³μ°
|
| 75 |
new_total_lines = sum(len(section_lines[sec]) for sec in section_lines)
|
| 76 |
|
| 77 |
return sections, (sections['verse'] + sections['chorus'] + sections['bridge']), new_total_lines, section_lines
|
| 78 |
|
| 79 |
-
|
| 80 |
def calculate_generation_params(lyrics):
|
| 81 |
sections, total_sections, total_lines, section_lines = analyze_lyrics(lyrics)
|
| 82 |
|
| 83 |
-
# κΈ°λ³Έ μκ° κ³μ° (μ΄ λ¨μ)
|
| 84 |
time_per_line = {
|
| 85 |
-
'verse': 4,
|
| 86 |
-
'chorus': 6,
|
| 87 |
-
'bridge': 5
|
| 88 |
}
|
| 89 |
|
| 90 |
-
# κ° μΉμ
λ³ μμ μκ° κ³μ°
|
| 91 |
section_durations = {}
|
| 92 |
for section_type in ['verse', 'chorus', 'bridge']:
|
| 93 |
-
# κ° μΉμ
μ λΌμΈ μμ ν΄λΉ μΉμ
μ μκ°μ κ³±ν¨
|
| 94 |
if isinstance(section_lines[section_type], list):
|
| 95 |
section_durations[section_type] = len(section_lines[section_type]) * time_per_line[section_type]
|
| 96 |
else:
|
| 97 |
section_durations[section_type] = section_lines[section_type] * time_per_line[section_type]
|
| 98 |
|
| 99 |
-
# μ 체 μκ° κ³μ°
|
| 100 |
total_duration = sum(duration for duration in section_durations.values())
|
| 101 |
-
total_duration = max(60, total_duration)
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
tokens_per_line = 200 # μ€λΉ ν ν° μ
|
| 106 |
|
| 107 |
total_tokens = base_tokens + (total_lines * tokens_per_line)
|
| 108 |
|
| 109 |
-
# μΉμ
κΈ°λ° μΈκ·Έλ¨ΌνΈ μ κ³μ°
|
| 110 |
if sections['chorus'] > 0:
|
| 111 |
-
num_segments = 3
|
| 112 |
else:
|
| 113 |
-
num_segments = 2
|
| 114 |
|
| 115 |
-
|
| 116 |
-
max_tokens = min(8000, total_tokens) # μ΅λ 8000 ν ν°μΌλ‘ μ ν
|
| 117 |
|
| 118 |
return {
|
| 119 |
'max_tokens': max_tokens,
|
|
@@ -125,43 +130,15 @@ def calculate_generation_params(lyrics):
|
|
| 125 |
'has_chorus': sections['chorus'] > 0
|
| 126 |
}
|
| 127 |
|
| 128 |
-
def get_audio_duration(file_path):
|
| 129 |
-
try:
|
| 130 |
-
import librosa
|
| 131 |
-
duration = librosa.get_duration(path=file_path)
|
| 132 |
-
return duration
|
| 133 |
-
except Exception as e:
|
| 134 |
-
logging.error(f"Failed to get audio duration: {e}")
|
| 135 |
-
return None
|
| 136 |
-
|
| 137 |
-
# μΈμ΄ κ°μ§ λ° λͺ¨λΈ μ ν ν¨μ
|
| 138 |
def detect_and_select_model(text):
|
| 139 |
-
if re.search(r'[\u3131-\u318E\uAC00-\uD7A3]', text):
|
| 140 |
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
|
| 141 |
-
elif re.search(r'[\u4e00-\u9fff]', text):
|
| 142 |
return "m-a-p/YuE-s1-7B-anneal-zh-cot"
|
| 143 |
-
elif re.search(r'[\u3040-\u309F\u30A0-\u30FF]', text):
|
| 144 |
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
|
| 145 |
-
else: # μμ΄/κΈ°ν
|
| 146 |
-
return "m-a-p/YuE-s1-7B-anneal-en-cot"
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
# GPU μ€μ μ΅μ ν
|
| 151 |
-
def optimize_gpu_settings():
|
| 152 |
-
if torch.cuda.is_available():
|
| 153 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
| 154 |
-
torch.backends.cudnn.benchmark = True
|
| 155 |
-
torch.backends.cudnn.deterministic = False
|
| 156 |
-
torch.backends.cudnn.enabled = True
|
| 157 |
-
|
| 158 |
-
torch.cuda.empty_cache()
|
| 159 |
-
torch.cuda.set_device(0)
|
| 160 |
-
|
| 161 |
-
logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
| 162 |
-
logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
|
| 163 |
else:
|
| 164 |
-
|
| 165 |
|
| 166 |
def install_flash_attn():
|
| 167 |
try:
|
|
@@ -183,17 +160,13 @@ def install_flash_attn():
|
|
| 183 |
except ImportError:
|
| 184 |
logging.info("Installing flash-attn...")
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
return True
|
| 194 |
-
except subprocess.CalledProcessError:
|
| 195 |
-
logging.warning("Failed to install flash-attn via pip, skipping...")
|
| 196 |
-
return False
|
| 197 |
|
| 198 |
except Exception as e:
|
| 199 |
logging.warning(f"Failed to install flash-attn: {e}")
|
|
@@ -201,19 +174,27 @@ def install_flash_attn():
|
|
| 201 |
|
| 202 |
def initialize_system():
|
| 203 |
optimize_gpu_settings()
|
| 204 |
-
has_flash_attn = install_flash_attn()
|
| 205 |
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
try:
|
| 219 |
os.chdir("./inference")
|
|
@@ -222,7 +203,7 @@ def initialize_system():
|
|
| 222 |
logging.error(f"Directory error: {e}")
|
| 223 |
raise
|
| 224 |
|
| 225 |
-
@lru_cache(maxsize=
|
| 226 |
def get_cached_file_path(content_hash, prefix):
|
| 227 |
return create_temp_file(content_hash, prefix)
|
| 228 |
|
|
@@ -254,84 +235,46 @@ def get_last_mp3_file(output_dir):
|
|
| 254 |
mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
|
| 255 |
return mp3_files_with_path[0]
|
| 256 |
|
| 257 |
-
def
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
tokens_per_segment = params['max_tokens'] // params['num_segments']
|
| 266 |
-
|
| 267 |
-
model_config = {
|
| 268 |
-
"m-a-p/YuE-s1-7B-anneal-en-cot": {
|
| 269 |
-
"max_tokens": params['max_tokens'],
|
| 270 |
-
"temperature": 0.8,
|
| 271 |
-
"batch_size": 8,
|
| 272 |
-
"num_segments": params['num_segments'],
|
| 273 |
-
"estimated_duration": params['estimated_duration']
|
| 274 |
-
},
|
| 275 |
-
"m-a-p/YuE-s1-7B-anneal-jp-kr-cot": {
|
| 276 |
-
"max_tokens": params['max_tokens'],
|
| 277 |
-
"temperature": 0.7,
|
| 278 |
-
"batch_size": 8,
|
| 279 |
-
"num_segments": params['num_segments'],
|
| 280 |
-
"estimated_duration": params['estimated_duration']
|
| 281 |
-
},
|
| 282 |
-
"m-a-p/YuE-s1-7B-anneal-zh-cot": {
|
| 283 |
-
"max_tokens": params['max_tokens'],
|
| 284 |
-
"temperature": 0.7,
|
| 285 |
-
"batch_size": 8,
|
| 286 |
-
"num_segments": params['num_segments'],
|
| 287 |
-
"estimated_duration": params['estimated_duration']
|
| 288 |
-
}
|
| 289 |
-
}
|
| 290 |
-
|
| 291 |
-
# μ½λ¬μ€κ° μλ κ²½μ° ν ν° μ μ¦κ°
|
| 292 |
-
if has_chorus:
|
| 293 |
-
for config in model_config.values():
|
| 294 |
-
config['max_tokens'] = int(config['max_tokens'] * 1.5) # 50% λ λ§μ ν ν° ν λΉ
|
| 295 |
-
|
| 296 |
-
return model_path, model_config[model_path], params
|
| 297 |
|
| 298 |
def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
| 299 |
genre_txt_path = None
|
| 300 |
lyrics_txt_path = None
|
| 301 |
|
| 302 |
try:
|
| 303 |
-
# λͺ¨λΈ μ ν λ° μ€μ
|
| 304 |
model_path, config, params = optimize_model_selection(lyrics_txt_content, genre_txt_content)
|
| 305 |
logging.info(f"Selected model: {model_path}")
|
| 306 |
logging.info(f"Lyrics analysis: {params}")
|
| 307 |
|
| 308 |
-
# μ½λ¬μ€ μΉμ
νμΈ λ° λ‘κΉ
|
| 309 |
has_chorus = params['sections']['chorus'] > 0
|
| 310 |
estimated_duration = params.get('estimated_duration', 90)
|
| 311 |
-
|
| 312 |
-
# μΈκ·Έλ¨ΌνΈ μ
|
| 313 |
if has_chorus:
|
| 314 |
-
actual_num_segments = min(4, actual_num_segments + 1) # μΈκ·Έλ¨ΌνΈ νλ μΆκ°
|
| 315 |
-
actual_max_tokens = min(8000, int(config['max_tokens'] * 1.3)) # 30% μ¦κ°
|
| 316 |
-
else:
|
| 317 |
-
actual_num_segments = min(3, actual_num_segments + 1)
|
| 318 |
actual_max_tokens = min(8000, int(config['max_tokens'] * 1.2))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
logging.info(f"Estimated duration: {estimated_duration} seconds")
|
| 324 |
logging.info(f"Has chorus sections: {has_chorus}")
|
| 325 |
logging.info(f"Using segments: {actual_num_segments}, tokens: {actual_max_tokens}")
|
| 326 |
|
| 327 |
-
# μμ νμΌ μμ±
|
| 328 |
genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_")
|
| 329 |
lyrics_txt_path = create_temp_file(lyrics_txt_content, prefix="lyrics_")
|
| 330 |
|
| 331 |
output_dir = "./output"
|
| 332 |
os.makedirs(output_dir, exist_ok=True)
|
| 333 |
empty_output_folder(output_dir)
|
| 334 |
-
|
| 335 |
command = [
|
| 336 |
"python", "infer.py",
|
| 337 |
"--stage1_model", model_path,
|
|
@@ -339,19 +282,15 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
| 339 |
"--genre_txt", genre_txt_path,
|
| 340 |
"--lyrics_txt", lyrics_txt_path,
|
| 341 |
"--run_n_segments", str(actual_num_segments),
|
| 342 |
-
"--stage2_batch_size", "
|
| 343 |
"--output_dir", output_dir,
|
| 344 |
"--cuda_idx", "0",
|
| 345 |
-
"--max_new_tokens", str(actual_max_tokens)
|
|
|
|
|
|
|
|
|
|
| 346 |
]
|
| 347 |
|
| 348 |
-
# GPU μ€μ
|
| 349 |
-
if torch.cuda.is_available():
|
| 350 |
-
command.append("--disable_offload_model")
|
| 351 |
-
# GPU μ€μ
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
# CUDA νκ²½ λ³μ μ€μ
|
| 355 |
env = os.environ.copy()
|
| 356 |
if torch.cuda.is_available():
|
| 357 |
env.update({
|
|
@@ -359,17 +298,11 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
| 359 |
"CUDA_HOME": "/usr/local/cuda",
|
| 360 |
"PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}",
|
| 361 |
"LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}",
|
| 362 |
-
"PYTORCH_CUDA_ALLOC_CONF":
|
|
|
|
|
|
|
| 363 |
})
|
| 364 |
|
| 365 |
-
# transformers μΊμ λ§μ΄κ·Έλ μ΄μ
μ²λ¦¬
|
| 366 |
-
try:
|
| 367 |
-
from transformers.utils import move_cache
|
| 368 |
-
move_cache()
|
| 369 |
-
except Exception as e:
|
| 370 |
-
logging.warning(f"Cache migration warning (non-critical): {e}")
|
| 371 |
-
|
| 372 |
-
# λͺ
λ Ή μ€ν
|
| 373 |
process = subprocess.run(
|
| 374 |
command,
|
| 375 |
env=env,
|
|
@@ -378,7 +311,6 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
| 378 |
text=True
|
| 379 |
)
|
| 380 |
|
| 381 |
-
# μ€ν κ²°κ³Ό λ‘κΉ
|
| 382 |
logging.info(f"Command output: {process.stdout}")
|
| 383 |
if process.stderr:
|
| 384 |
logging.error(f"Command error: {process.stderr}")
|
|
@@ -388,7 +320,6 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
| 388 |
logging.error(f"Command: {' '.join(command)}")
|
| 389 |
raise RuntimeError(f"Inference failed: {process.stderr}")
|
| 390 |
|
| 391 |
-
# κ²°κ³Ό μ²λ¦¬
|
| 392 |
last_mp3 = get_last_mp3_file(output_dir)
|
| 393 |
if last_mp3:
|
| 394 |
try:
|
|
@@ -398,7 +329,6 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
| 398 |
logging.info(f"Audio duration: {duration:.2f} seconds")
|
| 399 |
logging.info(f"Expected duration: {estimated_duration} seconds")
|
| 400 |
|
| 401 |
-
# μμ±λ μμ
μ΄ λ무 μ§§μ κ²½μ° κ²½κ³
|
| 402 |
if duration < estimated_duration * 0.8:
|
| 403 |
logging.warning(f"Generated audio is shorter than expected: {duration:.2f}s < {estimated_duration:.2f}s")
|
| 404 |
except Exception as e:
|
|
@@ -412,27 +342,55 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
|
| 412 |
logging.error(f"Inference error: {e}")
|
| 413 |
raise
|
| 414 |
finally:
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
|
| 430 |
def main():
|
| 431 |
-
# Gradio μΈν°νμ΄μ€
|
| 432 |
with gr.Blocks() as demo:
|
| 433 |
with gr.Column():
|
| 434 |
gr.Markdown("# Open SUNO: Full-Song Generation (Multi-Language Support)")
|
| 435 |
-
|
| 436 |
|
| 437 |
with gr.Row():
|
| 438 |
with gr.Column():
|
|
@@ -469,10 +427,8 @@ def main():
|
|
| 469 |
submit_btn = gr.Button("Generate Music", variant="primary")
|
| 470 |
music_out = gr.Audio(label="Generated Audio")
|
| 471 |
|
| 472 |
-
# λ€κ΅μ΄ μμ
|
| 473 |
gr.Examples(
|
| 474 |
examples=[
|
| 475 |
-
# μμ΄ μμ
|
| 476 |
[
|
| 477 |
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
|
| 478 |
"""[verse]
|
|
@@ -497,36 +453,27 @@ Guiding me back homeward, making my heart rejoice
|
|
| 497 |
Don't let this moment fade, hold me close tonight
|
| 498 |
With you here beside me, everything's alright
|
| 499 |
Can't imagine life alone, don't want to let you go
|
| 500 |
-
Stay with me forever, let our love just flow
|
| 501 |
-
"""
|
| 502 |
],
|
| 503 |
-
# νκ΅μ΄ μμ
|
| 504 |
[
|
| 505 |
"K-pop bright energetic synth dance electronic",
|
| 506 |
"""[verse]
|
| 507 |
μΈμ κ° λ§μ£Όν λλΉ μμμ
|
| 508 |
-
μ°λ¦° μλ‘λ₯Ό μμ보μμ§
|
| 509 |
|
| 510 |
[chorus]
|
| 511 |
λ€μ ν λ² λ΄κ² λ§ν΄μ€
|
| 512 |
-
λμ μ§μ¬μ μ¨κΈ°μ§ λ§μ μ€
|
| 513 |
|
| 514 |
[verse]
|
| 515 |
μ΄λμ΄ λ°€μ μ§λ λλ§λ€
|
| 516 |
-
λμ λͺ©μ리λ₯Ό λ μ¬λ €
|
| 517 |
|
| 518 |
[chorus]
|
| 519 |
λ€μ ν λ² λ΄κ² λ§ν΄μ€
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
"""
|
| 524 |
]
|
| 525 |
],
|
| 526 |
inputs=[genre_txt, lyrics_txt]
|
| 527 |
)
|
| 528 |
|
| 529 |
-
# μμ€ν
μ΄κΈ°ν
|
| 530 |
initialize_system()
|
| 531 |
|
| 532 |
def update_info(lyrics):
|
|
@@ -540,9 +487,6 @@ Stay with me forever, let our love just flow
|
|
| 540 |
f"Verses: {sections['verse']}, Chorus: {sections['chorus']} (Expected full length including chorus)"
|
| 541 |
)
|
| 542 |
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
# μ΄λ²€νΈ νΈλ€λ¬
|
| 546 |
lyrics_txt.change(
|
| 547 |
fn=update_info,
|
| 548 |
inputs=[lyrics_txt],
|
|
@@ -565,5 +509,8 @@ if __name__ == "__main__":
|
|
| 565 |
share=True,
|
| 566 |
show_api=True,
|
| 567 |
show_error=True,
|
| 568 |
-
max_threads=
|
| 569 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
]
|
| 21 |
)
|
| 22 |
|
| 23 |
+
def optimize_gpu_settings():
|
| 24 |
+
if torch.cuda.is_available():
|
| 25 |
+
# GPU λ©λͺ¨λ¦¬ κ΄λ¦¬ μ΅μ ν
|
| 26 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 27 |
+
torch.backends.cudnn.benchmark = True
|
| 28 |
+
torch.backends.cudnn.enabled = True
|
| 29 |
+
torch.backends.cudnn.deterministic = False
|
| 30 |
+
|
| 31 |
+
# L40Sμ μ΅μ νλ λ©λͺ¨λ¦¬ μ€μ
|
| 32 |
+
torch.cuda.empty_cache()
|
| 33 |
+
torch.cuda.set_device(0)
|
| 34 |
+
|
| 35 |
+
# CUDA μ€νΈλ¦Ό μ΅μ ν
|
| 36 |
+
torch.cuda.Stream(0)
|
| 37 |
+
|
| 38 |
+
# λ©λͺ¨λ¦¬ ν λΉ μ΅μ ν
|
| 39 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
|
| 40 |
+
|
| 41 |
+
logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
| 42 |
+
logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
|
| 43 |
+
|
| 44 |
+
# L40S νΉν μ€μ
|
| 45 |
+
if 'L40S' in torch.cuda.get_device_name(0):
|
| 46 |
+
torch.cuda.set_per_process_memory_fraction(0.95)
|
| 47 |
+
|
| 48 |
def analyze_lyrics(lyrics, repeat_chorus=2):
|
| 49 |
lines = [line.strip() for line in lyrics.split('\n') if line.strip()]
|
| 50 |
|
|
|
|
| 61 |
'chorus': [],
|
| 62 |
'bridge': []
|
| 63 |
}
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
for line in lines:
|
| 66 |
lower_line = line.lower()
|
| 67 |
if '[verse]' in lower_line:
|
|
|
|
|
|
|
| 68 |
current_section = 'verse'
|
| 69 |
sections['verse'] += 1
|
| 70 |
+
continue
|
| 71 |
elif '[chorus]' in lower_line:
|
|
|
|
|
|
|
| 72 |
current_section = 'chorus'
|
| 73 |
sections['chorus'] += 1
|
| 74 |
+
continue
|
| 75 |
elif '[bridge]' in lower_line:
|
|
|
|
|
|
|
| 76 |
current_section = 'bridge'
|
| 77 |
sections['bridge'] += 1
|
| 78 |
+
continue
|
| 79 |
|
| 80 |
+
if current_section:
|
| 81 |
+
section_lines[current_section].append(line)
|
|
|
|
| 82 |
|
|
|
|
| 83 |
if sections['chorus'] == 1 and repeat_chorus > 1:
|
| 84 |
chorus_block = section_lines['chorus'][:]
|
| 85 |
for _ in range(repeat_chorus - 1):
|
| 86 |
section_lines['chorus'].extend(chorus_block)
|
| 87 |
|
|
|
|
| 88 |
new_total_lines = sum(len(section_lines[sec]) for sec in section_lines)
|
| 89 |
|
| 90 |
return sections, (sections['verse'] + sections['chorus'] + sections['bridge']), new_total_lines, section_lines
|
| 91 |
|
|
|
|
| 92 |
def calculate_generation_params(lyrics):
|
| 93 |
sections, total_sections, total_lines, section_lines = analyze_lyrics(lyrics)
|
| 94 |
|
|
|
|
| 95 |
time_per_line = {
|
| 96 |
+
'verse': 4,
|
| 97 |
+
'chorus': 6,
|
| 98 |
+
'bridge': 5
|
| 99 |
}
|
| 100 |
|
|
|
|
| 101 |
section_durations = {}
|
| 102 |
for section_type in ['verse', 'chorus', 'bridge']:
|
|
|
|
| 103 |
if isinstance(section_lines[section_type], list):
|
| 104 |
section_durations[section_type] = len(section_lines[section_type]) * time_per_line[section_type]
|
| 105 |
else:
|
| 106 |
section_durations[section_type] = section_lines[section_type] * time_per_line[section_type]
|
| 107 |
|
|
|
|
| 108 |
total_duration = sum(duration for duration in section_durations.values())
|
| 109 |
+
total_duration = max(60, total_duration)
|
| 110 |
|
| 111 |
+
base_tokens = 3000
|
| 112 |
+
tokens_per_line = 200
|
|
|
|
| 113 |
|
| 114 |
total_tokens = base_tokens + (total_lines * tokens_per_line)
|
| 115 |
|
|
|
|
| 116 |
if sections['chorus'] > 0:
|
| 117 |
+
num_segments = 3
|
| 118 |
else:
|
| 119 |
+
num_segments = 2
|
| 120 |
|
| 121 |
+
max_tokens = min(8000, total_tokens)
|
|
|
|
| 122 |
|
| 123 |
return {
|
| 124 |
'max_tokens': max_tokens,
|
|
|
|
| 130 |
'has_chorus': sections['chorus'] > 0
|
| 131 |
}
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
def detect_and_select_model(text):
|
| 134 |
+
if re.search(r'[\u3131-\u318E\uAC00-\uD7A3]', text):
|
| 135 |
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
|
| 136 |
+
elif re.search(r'[\u4e00-\u9fff]', text):
|
| 137 |
return "m-a-p/YuE-s1-7B-anneal-zh-cot"
|
| 138 |
+
elif re.search(r'[\u3040-\u309F\u30A0-\u30FF]', text):
|
| 139 |
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
else:
|
| 141 |
+
return "m-a-p/YuE-s1-7B-anneal-en-cot"
|
| 142 |
|
| 143 |
def install_flash_attn():
|
| 144 |
try:
|
|
|
|
| 160 |
except ImportError:
|
| 161 |
logging.info("Installing flash-attn...")
|
| 162 |
|
| 163 |
+
subprocess.run(
|
| 164 |
+
["pip", "install", "flash-attn", "--no-build-isolation"],
|
| 165 |
+
check=True,
|
| 166 |
+
capture_output=True
|
| 167 |
+
)
|
| 168 |
+
logging.info("flash-attn installed successfully!")
|
| 169 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
except Exception as e:
|
| 172 |
logging.warning(f"Failed to install flash-attn: {e}")
|
|
|
|
| 174 |
|
| 175 |
def initialize_system():
|
| 176 |
optimize_gpu_settings()
|
|
|
|
| 177 |
|
| 178 |
+
with ThreadPoolExecutor(max_workers=4) as executor:
|
| 179 |
+
futures = []
|
| 180 |
+
|
| 181 |
+
futures.append(executor.submit(install_flash_attn))
|
| 182 |
+
|
| 183 |
+
from huggingface_hub import snapshot_download
|
| 184 |
+
|
| 185 |
+
folder_path = './inference/xcodec_mini_infer'
|
| 186 |
+
os.makedirs(folder_path, exist_ok=True)
|
| 187 |
+
logging.info(f"Created folder at: {folder_path}")
|
| 188 |
+
|
| 189 |
+
futures.append(executor.submit(
|
| 190 |
+
snapshot_download,
|
| 191 |
+
repo_id="m-a-p/xcodec_mini_infer",
|
| 192 |
+
local_dir="./inference/xcodec_mini_infer",
|
| 193 |
+
resume_download=True
|
| 194 |
+
))
|
| 195 |
+
|
| 196 |
+
for future in futures:
|
| 197 |
+
future.result()
|
| 198 |
|
| 199 |
try:
|
| 200 |
os.chdir("./inference")
|
|
|
|
| 203 |
logging.error(f"Directory error: {e}")
|
| 204 |
raise
|
| 205 |
|
| 206 |
+
@lru_cache(maxsize=100)
|
| 207 |
def get_cached_file_path(content_hash, prefix):
|
| 208 |
return create_temp_file(content_hash, prefix)
|
| 209 |
|
|
|
|
| 235 |
mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
|
| 236 |
return mp3_files_with_path[0]
|
| 237 |
|
| 238 |
+
def get_audio_duration(file_path):
|
| 239 |
+
try:
|
| 240 |
+
import librosa
|
| 241 |
+
duration = librosa.get_duration(path=file_path)
|
| 242 |
+
return duration
|
| 243 |
+
except Exception as e:
|
| 244 |
+
logging.error(f"Failed to get audio duration: {e}")
|
| 245 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
|
| 248 |
genre_txt_path = None
|
| 249 |
lyrics_txt_path = None
|
| 250 |
|
| 251 |
try:
|
|
|
|
| 252 |
model_path, config, params = optimize_model_selection(lyrics_txt_content, genre_txt_content)
|
| 253 |
logging.info(f"Selected model: {model_path}")
|
| 254 |
logging.info(f"Lyrics analysis: {params}")
|
| 255 |
|
|
|
|
| 256 |
has_chorus = params['sections']['chorus'] > 0
|
| 257 |
estimated_duration = params.get('estimated_duration', 90)
|
| 258 |
+
|
| 259 |
+
# μΈκ·Έλ¨ΌνΈ λ° ν ν° μ μ€μ
|
| 260 |
if has_chorus:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
actual_max_tokens = min(8000, int(config['max_tokens'] * 1.2))
|
| 262 |
+
actual_num_segments = min(4, params['num_segments'] + 1)
|
| 263 |
+
else:
|
| 264 |
+
actual_max_tokens = config['max_tokens']
|
| 265 |
+
actual_num_segments = params['num_segments']
|
| 266 |
|
|
|
|
|
|
|
|
|
|
| 267 |
logging.info(f"Estimated duration: {estimated_duration} seconds")
|
| 268 |
logging.info(f"Has chorus sections: {has_chorus}")
|
| 269 |
logging.info(f"Using segments: {actual_num_segments}, tokens: {actual_max_tokens}")
|
| 270 |
|
|
|
|
| 271 |
genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_")
|
| 272 |
lyrics_txt_path = create_temp_file(lyrics_txt_content, prefix="lyrics_")
|
| 273 |
|
| 274 |
output_dir = "./output"
|
| 275 |
os.makedirs(output_dir, exist_ok=True)
|
| 276 |
empty_output_folder(output_dir)
|
| 277 |
+
|
| 278 |
command = [
|
| 279 |
"python", "infer.py",
|
| 280 |
"--stage1_model", model_path,
|
|
|
|
| 282 |
"--genre_txt", genre_txt_path,
|
| 283 |
"--lyrics_txt", lyrics_txt_path,
|
| 284 |
"--run_n_segments", str(actual_num_segments),
|
| 285 |
+
"--stage2_batch_size", "16",
|
| 286 |
"--output_dir", output_dir,
|
| 287 |
"--cuda_idx", "0",
|
| 288 |
+
"--max_new_tokens", str(actual_max_tokens),
|
| 289 |
+
"--use_flash_attention", "True",
|
| 290 |
+
"--use_bettertransformer", "True",
|
| 291 |
+
"--use_compile", "True"
|
| 292 |
]
|
| 293 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
env = os.environ.copy()
|
| 295 |
if torch.cuda.is_available():
|
| 296 |
env.update({
|
|
|
|
| 298 |
"CUDA_HOME": "/usr/local/cuda",
|
| 299 |
"PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}",
|
| 300 |
"LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}",
|
| 301 |
+
"PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512",
|
| 302 |
+
"CUDA_LAUNCH_BLOCKING": "0",
|
| 303 |
+
"TORCH_DISTRIBUTED_DEBUG": "DETAIL"
|
| 304 |
})
|
| 305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
process = subprocess.run(
|
| 307 |
command,
|
| 308 |
env=env,
|
|
|
|
| 311 |
text=True
|
| 312 |
)
|
| 313 |
|
|
|
|
| 314 |
logging.info(f"Command output: {process.stdout}")
|
| 315 |
if process.stderr:
|
| 316 |
logging.error(f"Command error: {process.stderr}")
|
|
|
|
| 320 |
logging.error(f"Command: {' '.join(command)}")
|
| 321 |
raise RuntimeError(f"Inference failed: {process.stderr}")
|
| 322 |
|
|
|
|
| 323 |
last_mp3 = get_last_mp3_file(output_dir)
|
| 324 |
if last_mp3:
|
| 325 |
try:
|
|
|
|
| 329 |
logging.info(f"Audio duration: {duration:.2f} seconds")
|
| 330 |
logging.info(f"Expected duration: {estimated_duration} seconds")
|
| 331 |
|
|
|
|
| 332 |
if duration < estimated_duration * 0.8:
|
| 333 |
logging.warning(f"Generated audio is shorter than expected: {duration:.2f}s < {estimated_duration:.2f}s")
|
| 334 |
except Exception as e:
|
|
|
|
| 342 |
logging.error(f"Inference error: {e}")
|
| 343 |
raise
|
| 344 |
finally:
|
| 345 |
+
for path in [genre_txt_path, lyrics_txt_path]:
|
| 346 |
+
if path and os.path.exists(path):
|
| 347 |
+
try:
|
| 348 |
+
os.remove(path)
|
| 349 |
+
logging.debug(f"Removed temporary file: {path}")
|
| 350 |
+
except Exception as e:
|
| 351 |
+
logging.warning(f"Failed to remove temporary file {path}: {e}")
|
| 352 |
+
|
| 353 |
+
def optimize_model_selection(lyrics, genre):
|
| 354 |
+
model_path = detect_and_select_model(lyrics)
|
| 355 |
+
params = calculate_generation_params(lyrics)
|
| 356 |
+
|
| 357 |
+
has_chorus = params['sections']['chorus'] > 0
|
| 358 |
+
tokens_per_segment = params['max_tokens'] // params['num_segments']
|
| 359 |
+
|
| 360 |
+
model_config = {
|
| 361 |
+
"m-a-p/YuE-s1-7B-anneal-en-cot": {
|
| 362 |
+
"max_tokens": params['max_tokens'],
|
| 363 |
+
"temperature": 0.8,
|
| 364 |
+
"batch_size": 16,
|
| 365 |
+
"num_segments": params['num_segments'],
|
| 366 |
+
"estimated_duration": params['estimated_duration']
|
| 367 |
+
},
|
| 368 |
+
"m-a-p/YuE-s1-7B-anneal-jp-kr-cot": {
|
| 369 |
+
"max_tokens": params['max_tokens'],
|
| 370 |
+
"temperature": 0.7,
|
| 371 |
+
"batch_size": 16,
|
| 372 |
+
"num_segments": params['num_segments'],
|
| 373 |
+
"estimated_duration": params['estimated_duration']
|
| 374 |
+
},
|
| 375 |
+
"m-a-p/YuE-s1-7B-anneal-zh-cot": {
|
| 376 |
+
"max_tokens": params['max_tokens'],
|
| 377 |
+
"temperature": 0.7,
|
| 378 |
+
"batch_size": 16,
|
| 379 |
+
"num_segments": params['num_segments'],
|
| 380 |
+
"estimated_duration": params['estimated_duration']
|
| 381 |
+
}
|
| 382 |
+
}
|
| 383 |
+
|
| 384 |
+
if has_chorus:
|
| 385 |
+
for config in model_config.values():
|
| 386 |
+
config['max_tokens'] = int(config['max_tokens'] * 1.5)
|
| 387 |
+
|
| 388 |
+
return model_path, model_config[model_path], params
|
| 389 |
|
| 390 |
def main():
|
|
|
|
| 391 |
with gr.Blocks() as demo:
|
| 392 |
with gr.Column():
|
| 393 |
gr.Markdown("# Open SUNO: Full-Song Generation (Multi-Language Support)")
|
|
|
|
| 394 |
|
| 395 |
with gr.Row():
|
| 396 |
with gr.Column():
|
|
|
|
| 427 |
submit_btn = gr.Button("Generate Music", variant="primary")
|
| 428 |
music_out = gr.Audio(label="Generated Audio")
|
| 429 |
|
|
|
|
| 430 |
gr.Examples(
|
| 431 |
examples=[
|
|
|
|
| 432 |
[
|
| 433 |
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
|
| 434 |
"""[verse]
|
|
|
|
| 453 |
Don't let this moment fade, hold me close tonight
|
| 454 |
With you here beside me, everything's alright
|
| 455 |
Can't imagine life alone, don't want to let you go
|
| 456 |
+
Stay with me forever, let our love just flow"""
|
|
|
|
| 457 |
],
|
|
|
|
| 458 |
[
|
| 459 |
"K-pop bright energetic synth dance electronic",
|
| 460 |
"""[verse]
|
| 461 |
μΈμ κ° λ§μ£Όν λλΉ μμμ
|
|
|
|
| 462 |
|
| 463 |
[chorus]
|
| 464 |
λ€μ ν λ² λ΄κ² λ§ν΄μ€
|
|
|
|
| 465 |
|
| 466 |
[verse]
|
| 467 |
μ΄λμ΄ λ°€μ μ§λ λλ§λ€
|
|
|
|
| 468 |
|
| 469 |
[chorus]
|
| 470 |
λ€μ ν λ² λ΄κ² λ§ν΄μ€
|
| 471 |
+
"""
|
|
|
|
|
|
|
|
|
|
| 472 |
]
|
| 473 |
],
|
| 474 |
inputs=[genre_txt, lyrics_txt]
|
| 475 |
)
|
| 476 |
|
|
|
|
| 477 |
initialize_system()
|
| 478 |
|
| 479 |
def update_info(lyrics):
|
|
|
|
| 487 |
f"Verses: {sections['verse']}, Chorus: {sections['chorus']} (Expected full length including chorus)"
|
| 488 |
)
|
| 489 |
|
|
|
|
|
|
|
|
|
|
| 490 |
lyrics_txt.change(
|
| 491 |
fn=update_info,
|
| 492 |
inputs=[lyrics_txt],
|
|
|
|
| 509 |
share=True,
|
| 510 |
show_api=True,
|
| 511 |
show_error=True,
|
| 512 |
+
max_threads=8,
|
| 513 |
+
enable_queue=True,
|
| 514 |
+
cache_examples=True,
|
| 515 |
+
analytics_enabled=False
|
| 516 |
+
)
|