Spaces:
Building
on
L40S
Building
on
L40S
File size: 14,103 Bytes
9b1a8f5 bd2cd71 3c1a098 bd2cd71 9b1a8f5 bd2cd71 024290d 3c1a098 024290d 3c1a098 024290d 3c1a098 024290d 3c1a098 024290d 3c1a098 024290d 3c1a098 024290d 3c1a098 024290d 3c1a098 024290d 3c1a098 bd2cd71 4594c83 bd2cd71 4594c83 bd2cd71 4594c83 bd2cd71 4594c83 bd2cd71 5ebef38 bd2cd71 9b1a8f5 bd2cd71 9b1a8f5 bd2cd71 9b1a8f5 bd2cd71 9b1a8f5 c76da8f bd2cd71 9b1a8f5 bd2cd71 0e550b3 9b1a8f5 bd2cd71 9b1a8f5 c76da8f bd2cd71 c76da8f bd2cd71 c76da8f bd2cd71 c76da8f 024290d c82669c 9b1a8f5 3c1a098 024290d 3c1a098 024290d 3c1a098 bd2cd71 c94ca07 bd2cd71 3c1a098 bd2cd71 3c1a098 bd2cd71 024290d 3c1a098 bd2cd71 024290d 3c1a098 bd2cd71 3c1a098 024290d bd2cd71 9b1a8f5 bd2cd71 c76da8f bd2cd71 9b1a8f5 bd2cd71 9b1a8f5 bd2cd71 9b1a8f5 3c1a098 92ed43a bd2cd71 9b1a8f5 bd2cd71 3c1a098 024290d bd2cd71 fc4c070 bd2cd71 024290d bd2cd71 024290d bd2cd71 024290d bd2cd71 3c1a098 bd2cd71 024290d bd2cd71 fc4c070 024290d fc4c070 bd2cd71 3c1a098 fc4c070 aac9182 024290d aac9182 a5a83e4 fc4c070 3c1a098 024290d fc4c070 024290d fc4c070 bd2cd71 fc4c070 bd2cd71 9b1a8f5 bd2cd71 9b1a8f5 bd2cd71 9b1a8f5 bd2cd71 024290d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import torch
import logging
import numpy as np
import re
from concurrent.futures import ThreadPoolExecutor
from functools import lru_cache
# λ‘κΉ
μ€μ
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('yue_generation.log'),
logging.StreamHandler()
]
)
# κ°μ¬ λΆμ ν¨μ
def analyze_lyrics(lyrics):
# μ€ λ¨μλ‘ λΆλ¦¬
lines = [line.strip() for line in lyrics.split('\n') if line.strip()]
# μΉμ
μΉ΄μ΄νΈ
sections = {
'verse': 0,
'chorus': 0,
'bridge': 0,
'total_lines': len(lines)
}
current_section = None
section_lines = {
'verse': 0,
'chorus': 0,
'bridge': 0
}
for line in lines:
lower_line = line.lower()
if '[verse]' in lower_line:
current_section = 'verse'
sections['verse'] += 1
elif '[chorus]' in lower_line:
current_section = 'chorus'
sections['chorus'] += 1
elif '[bridge]' in lower_line:
current_section = 'bridge'
sections['bridge'] += 1
elif current_section and line.strip():
section_lines[current_section] += 1
# μ΄ μΉμ
μ κ³μ°
total_sections = sections['verse'] + sections['chorus'] + sections['bridge']
return sections, total_sections, len(lines), section_lines
def calculate_generation_params(lyrics):
sections, total_sections, total_lines, section_lines = analyze_lyrics(lyrics)
# κΈ°λ³Έ ν ν° μ κ³μ°
base_tokens_per_line = 200
verse_tokens = section_lines['verse'] * base_tokens_per_line
chorus_tokens = section_lines['chorus'] * (base_tokens_per_line * 1.5) # μ½λ¬μ€λ 50% λ λ§μ ν ν°
bridge_tokens = section_lines['bridge'] * base_tokens_per_line
# μ΄ ν ν° μ κ³μ°
total_tokens = int(verse_tokens + chorus_tokens + bridge_tokens)
# μΉμ
κΈ°λ° μΈκ·Έλ¨ΌνΈ μ κ³μ°
num_segments = max(2, min(4, total_sections))
# ν ν° μ μ ν
max_tokens = min(32000, max(3000, total_tokens))
return {
'max_tokens': max_tokens,
'num_segments': num_segments,
'sections': sections,
'section_lines': section_lines
}
# μΈμ΄ κ°μ§ λ° λͺ¨λΈ μ ν ν¨μ
def detect_and_select_model(text):
if re.search(r'[\u3131-\u318E\uAC00-\uD7A3]', text): # νκΈ
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
elif re.search(r'[\u4e00-\u9fff]', text): # μ€κ΅μ΄
return "m-a-p/YuE-s1-7B-anneal-zh-cot"
elif re.search(r'[\u3040-\u309F\u30A0-\u30FF]', text): # μΌλ³Έμ΄
return "m-a-p/YuE-s1-7B-anneal-jp-kr-cot"
else: # μμ΄/κΈ°ν
return "m-a-p/YuE-s1-7B-anneal-en-cot"
def optimize_model_selection(lyrics, genre):
model_path = detect_and_select_model(lyrics)
params = calculate_generation_params(lyrics)
model_config = {
"m-a-p/YuE-s1-7B-anneal-en-cot": {
"max_tokens": params['max_tokens'],
"temperature": 0.8,
"batch_size": 8,
"num_segments": params['num_segments'],
"chorus_strength": 1.2 if params['sections']['chorus'] > 0 else 1.0
},
"m-a-p/YuE-s1-7B-anneal-jp-kr-cot": {
"max_tokens": params['max_tokens'],
"temperature": 0.7,
"batch_size": 8,
"num_segments": params['num_segments'],
"chorus_strength": 1.2 if params['sections']['chorus'] > 0 else 1.0
},
"m-a-p/YuE-s1-7B-anneal-zh-cot": {
"max_tokens": params['max_tokens'],
"temperature": 0.7,
"batch_size": 8,
"num_segments": params['num_segments'],
"chorus_strength": 1.2 if params['sections']['chorus'] > 0 else 1.0
}
}
return model_path, model_config[model_path], params
# GPU μ€μ μ΅μ ν
def optimize_gpu_settings():
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.enabled = True
torch.cuda.empty_cache()
torch.cuda.set_device(0)
logging.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
logging.info(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
else:
logging.warning("GPU not available!")
def install_flash_attn():
try:
logging.info("Installing flash-attn...")
subprocess.run(
["pip", "install", "flash-attn", "--no-build-isolation"],
check=True,
capture_output=True
)
logging.info("flash-attn installed successfully!")
except subprocess.CalledProcessError as e:
logging.error(f"Failed to install flash-attn: {e}")
raise
def initialize_system():
optimize_gpu_settings()
install_flash_attn()
from huggingface_hub import snapshot_download
folder_path = './inference/xcodec_mini_infer'
os.makedirs(folder_path, exist_ok=True)
logging.info(f"Created folder at: {folder_path}")
snapshot_download(
repo_id="m-a-p/xcodec_mini_infer",
local_dir="./inference/xcodec_mini_infer",
resume_download=True
)
try:
os.chdir("./inference")
logging.info(f"Working directory changed to: {os.getcwd()}")
except FileNotFoundError as e:
logging.error(f"Directory error: {e}")
raise
@lru_cache(maxsize=100)
def get_cached_file_path(content_hash, prefix):
return create_temp_file(content_hash, prefix)
def empty_output_folder(output_dir):
try:
shutil.rmtree(output_dir)
os.makedirs(output_dir)
logging.info(f"Output folder cleaned: {output_dir}")
except Exception as e:
logging.error(f"Error cleaning output folder: {e}")
raise
def create_temp_file(content, prefix, suffix=".txt"):
temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix)
content = content.strip() + "\n\n"
content = content.replace("\r\n", "\n").replace("\r", "\n")
temp_file.write(content)
temp_file.close()
logging.debug(f"Temporary file created: {temp_file.name}")
return temp_file.name
def get_last_mp3_file(output_dir):
mp3_files = [f for f in os.listdir(output_dir) if f.endswith('.mp3')]
if not mp3_files:
logging.warning("No MP3 files found")
return None
mp3_files_with_path = [os.path.join(output_dir, f) for f in mp3_files]
mp3_files_with_path.sort(key=os.path.getmtime, reverse=True)
return mp3_files_with_path[0]
def infer(genre_txt_content, lyrics_txt_content, num_segments, max_new_tokens):
try:
# λͺ¨λΈ μ ν λ° μ€μ
model_path, config, params = optimize_model_selection(lyrics_txt_content, genre_txt_content)
logging.info(f"Selected model: {model_path}")
logging.info(f"Lyrics analysis: {params}")
# μ€μ μ¬μ©ν νλΌλ―Έν°
actual_num_segments = config['num_segments']
actual_max_tokens = config['max_tokens']
logging.info(f"Using segments: {actual_num_segments}, tokens: {actual_max_tokens}")
# μμ νμΌ μμ±
genre_txt_path = create_temp_file(genre_txt_content, prefix="genre_")
lyrics_txt_path = create_temp_file(lyrics_txt_content, prefix="lyrics_")
output_dir = "./output"
os.makedirs(output_dir, exist_ok=True)
empty_output_folder(output_dir)
# λͺ
λ Ήμ΄ κ΅¬μ±
command = [
"python", "infer.py",
"--stage1_model", model_path,
"--stage2_model", "m-a-p/YuE-s2-1B-general",
"--genre_txt", genre_txt_path,
"--lyrics_txt", lyrics_txt_path,
"--run_n_segments", str(actual_num_segments),
"--stage2_batch_size", str(config['batch_size']),
"--output_dir", output_dir,
"--cuda_idx", "0",
"--max_new_tokens", str(actual_max_tokens),
"--temperature", str(config['temperature']),
"--disable_offload_model",
"--use_flash_attention_2",
"--bf16",
"--chorus_strength", str(config['chorus_strength'])
]
# CUDA νκ²½ λ³μ μ€μ
env = os.environ.copy()
env.update({
"CUDA_VISIBLE_DEVICES": "0",
"CUDA_HOME": "/usr/local/cuda",
"PATH": f"/usr/local/cuda/bin:{env.get('PATH', '')}",
"LD_LIBRARY_PATH": f"/usr/local/cuda/lib64:{env.get('LD_LIBRARY_PATH', '')}",
"PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512"
})
# λͺ
λ Ή μ€ν
process = subprocess.run(command, env=env, check=True, capture_output=True)
logging.info("Inference completed successfully")
# κ²°κ³Ό μ²λ¦¬
last_mp3 = get_last_mp3_file(output_dir)
if last_mp3:
logging.info(f"Generated audio file: {last_mp3}")
return last_mp3
else:
logging.warning("No output audio file generated")
return None
except Exception as e:
logging.error(f"Inference error: {e}")
raise
finally:
# μμ νμΌ μ 리
for file in [genre_txt_path, lyrics_txt_path]:
try:
os.remove(file)
logging.debug(f"Removed temporary file: {file}")
except Exception as e:
logging.warning(f"Failed to remove temporary file {file}: {e}")
# Gradio μΈν°νμ΄μ€
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation (Multi-Language Support)")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(
label="Genre",
placeholder="Enter music genre and style descriptions..."
)
lyrics_txt = gr.Textbox(
label="Lyrics (Supports English, Korean, Japanese, Chinese)",
placeholder="Enter song lyrics with [verse], [chorus], [bridge] tags...",
lines=10
)
with gr.Column():
num_segments = gr.Number(
label="Number of Song Segments (Auto-adjusted based on lyrics)",
value=2,
minimum=1,
maximum=4,
step=1,
interactive=False
)
max_new_tokens = gr.Slider(
label="Max New Tokens (Auto-adjusted based on lyrics)",
minimum=500,
maximum=32000,
step=500,
value=4000,
interactive=False
)
submit_btn = gr.Button("Generate Music", variant="primary")
music_out = gr.Audio(label="Generated Audio")
# λ€κ΅μ΄ μμ
gr.Examples(
examples=[
# μμ΄ μμ
[
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
"""[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice
[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
[verse]
Morning light is breaking, through the window pane
Memories of yesterday, like soft summer rain
In your arms I'm finding, all I'm dreaming of
Every day beside you, fills my heart with love
[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
"""
],
# νκ΅μ΄ μμ
[
"K-pop bright energetic synth dance electronic",
"""[verse]
λΉλλ λ³λ€μ²λΌ μ°λ¦¬μ κΏμ΄
μ νλμ μλμ λ°μ§μ΄λ€
ν¨κ»λΌλ©΄ μ΄λλ κ° μ μμ΄
μ°λ¦¬μ μ΄μΌκΈ°κ° μμλλ€
[chorus]
λ¬λ €κ°μ λ λμ΄ λ λ©λ¦¬
λλ €μμ μμ΄ λμ ν¨κ»λΌλ©΄
μμν κ³μλ μ°λ¦¬μ λ
Έλ
μ΄ μκ°μ κΈ°μ΅ν΄ forever
[verse]
μλ‘μ΄ λ΄μΌμ ν₯ν΄ λμκ°
μ°λ¦¬λ§μ κΈΈμ λ§λ€μ΄κ°
λ―ΏμμΌλ‘ κ°λν μ°λ¦¬μ λ§
μ λ λ©μΆμ§ μμ κ³μν΄μ
[chorus]
λ¬λ €κ°μ λ λμ΄ λ λ©λ¦¬
λλ €μμ μμ΄ λμ ν¨κ»λΌλ©΄
μμν κ³μλ μ°λ¦¬μ λ
Έλ
μ΄ μκ°μ κΈ°μ΅ν΄ forever
"""
]
],
inputs=[genre_txt, lyrics_txt]
)
# μμ€ν
μ΄κΈ°ν
initialize_system()
# μ΄λ²€νΈ νΈλ€λ¬
submit_btn.click(
fn=infer,
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs=[music_out]
)
# μλ² μ€μ μΌλ‘ μ€ν
demo.queue(concurrency_count=2).launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
enable_queue=True,
show_api=True,
show_error=True
) |