Update app.py
Browse files
app.py
CHANGED
@@ -16,30 +16,54 @@ import os
|
|
16 |
import random
|
17 |
import gc
|
18 |
|
19 |
-
# ์์ ์ ์
|
20 |
MAX_SEED = 2**32 - 1
|
21 |
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
|
22 |
MODEL_LORA_REPO = "Motas/Flux_Fashion_Photography_Style"
|
23 |
CLOTHES_LORA_REPO = "prithivMLmods/Canopus-Clothing-Flux-LoRA"
|
24 |
|
25 |
-
# ๋ฉ๋ชจ๋ฆฌ
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
#
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
fashion_pipe = None
|
44 |
translator = None
|
45 |
mask_predictor = None
|
@@ -48,91 +72,31 @@ vt_model = None
|
|
48 |
pt_model = None
|
49 |
vt_inference = None
|
50 |
pt_inference = None
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
torch.cuda.empty_cache()
|
55 |
-
torch.cuda.synchronize()
|
56 |
-
gc.collect()
|
57 |
-
|
58 |
-
# ์ด๊ธฐํ ํจ์
|
59 |
-
def initialize_models():
|
60 |
-
global fashion_pipe
|
61 |
-
if fashion_pipe is None:
|
62 |
-
fashion_pipe = DiffusionPipeline.from_pretrained(
|
63 |
-
BASE_MODEL,
|
64 |
-
torch_dtype=torch.float16,
|
65 |
-
use_auth_token=HF_TOKEN
|
66 |
-
)
|
67 |
-
fashion_pipe.to(device)
|
68 |
-
|
69 |
-
# ์ฌ๊ธฐ์ initialize_models ํธ์ถ
|
70 |
-
initialize_models()
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
# ๋ชจ๋ธ ์ฌ์ฉ ํ ๋ฉ๋ชจ๋ฆฌ ํด์
|
75 |
-
def unload_models():
|
76 |
-
global fashion_pipe, translator, mask_predictor, densepose_predictor, vt_model, pt_model
|
77 |
-
fashion_pipe = None
|
78 |
-
translator = None
|
79 |
-
mask_predictor = None
|
80 |
-
densepose_predictor = None
|
81 |
-
vt_model = None
|
82 |
-
pt_model = None
|
83 |
-
clear_memory()
|
84 |
-
|
85 |
-
# Hugging Face ํ ํฐ ์ค์
|
86 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
87 |
-
if HF_TOKEN is None:
|
88 |
-
raise ValueError("Please set the HF_TOKEN environment variable")
|
89 |
-
login(token=HF_TOKEN)
|
90 |
-
|
91 |
-
# CUDA ์ค์
|
92 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
93 |
|
94 |
-
# ๋ชจ๋ธ ๋ก๋ ํจ์
|
95 |
-
def load_model_with_optimization(model_class, *args, **kwargs):
|
96 |
-
torch.cuda.empty_cache()
|
97 |
-
gc.collect()
|
98 |
-
model = model_class(*args, **kwargs)
|
99 |
-
if device == "cuda":
|
100 |
-
model = model.half() # FP16์ผ๋ก ๋ณํ
|
101 |
-
return model.to(device)
|
102 |
-
|
103 |
-
def load_lora(pipe, lora_path):
|
104 |
-
try:
|
105 |
-
pipe.unload_lora_weights() # ๊ธฐ์กด LoRA ๊ฐ์ค์น ์ ๊ฑฐ
|
106 |
-
except:
|
107 |
-
pass
|
108 |
-
|
109 |
-
try:
|
110 |
-
pipe.load_lora_weights(lora_path)
|
111 |
-
return pipe
|
112 |
-
except Exception as e:
|
113 |
-
print(f"Warning: Failed to load LoRA weights from {lora_path}: {e}")
|
114 |
-
return pipe
|
115 |
|
116 |
-
#
|
117 |
-
|
118 |
-
def get_fashion_pipe():
|
119 |
global fashion_pipe
|
120 |
if fashion_pipe is None:
|
121 |
-
|
122 |
fashion_pipe = DiffusionPipeline.from_pretrained(
|
123 |
BASE_MODEL,
|
124 |
torch_dtype=torch.float16,
|
125 |
use_auth_token=HF_TOKEN
|
126 |
)
|
127 |
try:
|
128 |
-
fashion_pipe.enable_xformers_memory_efficient_attention()
|
129 |
except Exception as e:
|
130 |
print(f"Warning: Could not enable memory efficient attention: {e}")
|
131 |
fashion_pipe.enable_sequential_cpu_offload()
|
132 |
return fashion_pipe
|
133 |
|
134 |
-
|
135 |
-
translator = None
|
136 |
def get_translator():
|
137 |
global translator
|
138 |
if translator is None:
|
@@ -141,8 +105,7 @@ def get_translator():
|
|
141 |
device=device if device == "cuda" else -1)
|
142 |
return translator
|
143 |
|
144 |
-
|
145 |
-
# Leffa ๋ชจ๋ธ ๊ด๋ จ ํจ์๋ค
|
146 |
def get_mask_predictor():
|
147 |
global mask_predictor
|
148 |
if mask_predictor is None:
|
@@ -152,6 +115,7 @@ def get_mask_predictor():
|
|
152 |
)
|
153 |
return mask_predictor
|
154 |
|
|
|
155 |
def get_densepose_predictor():
|
156 |
global densepose_predictor
|
157 |
if densepose_predictor is None:
|
@@ -161,41 +125,60 @@ def get_densepose_predictor():
|
|
161 |
)
|
162 |
return densepose_predictor
|
163 |
|
|
|
164 |
def get_vt_model():
|
165 |
global vt_model, vt_inference
|
166 |
if vt_model is None:
|
167 |
-
|
168 |
-
vt_model = load_model_with_optimization(
|
169 |
-
LeffaModel,
|
170 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
171 |
pretrained_model="./ckpts/virtual_tryon.pth"
|
172 |
)
|
|
|
173 |
vt_inference = LeffaInference(model=vt_model)
|
174 |
return vt_model, vt_inference
|
175 |
|
|
|
176 |
def get_pt_model():
|
177 |
global pt_model, pt_inference
|
178 |
if pt_model is None:
|
179 |
-
|
180 |
-
pt_model = load_model_with_optimization(
|
181 |
-
LeffaModel,
|
182 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
|
183 |
pretrained_model="./ckpts/pose_transfer.pth"
|
184 |
)
|
|
|
185 |
pt_inference = LeffaInference(model=pt_model)
|
186 |
return pt_model, pt_inference
|
187 |
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
|
|
191 |
def contains_korean(text):
|
192 |
return any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text)
|
193 |
|
|
|
|
|
194 |
@spaces.GPU()
|
|
|
195 |
def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
196 |
-
clear_memory() # ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
197 |
-
|
198 |
try:
|
|
|
199 |
if contains_korean(prompt):
|
200 |
translator = get_translator()
|
201 |
translated = translator(prompt)[0]['translation_text']
|
@@ -203,9 +186,10 @@ def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width
|
|
203 |
else:
|
204 |
actual_prompt = prompt
|
205 |
|
206 |
-
|
|
|
207 |
|
208 |
-
#
|
209 |
if mode == "Generate Model":
|
210 |
pipe = load_lora(pipe, MODEL_LORA_REPO)
|
211 |
trigger_word = "fashion photography, professional model"
|
@@ -213,19 +197,23 @@ def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width
|
|
213 |
pipe = load_lora(pipe, CLOTHES_LORA_REPO)
|
214 |
trigger_word = "upper clothing, fashion item"
|
215 |
|
216 |
-
#
|
217 |
-
width = min(width, 768)
|
218 |
-
height = min(height, 768)
|
|
|
219 |
|
|
|
220 |
if randomize_seed:
|
221 |
seed = random.randint(0, MAX_SEED)
|
222 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
223 |
|
|
|
224 |
progress(0, "Starting fashion generation...")
|
225 |
|
|
|
226 |
image = pipe(
|
227 |
prompt=f"{actual_prompt} {trigger_word}",
|
228 |
-
num_inference_steps=
|
229 |
guidance_scale=cfg_scale,
|
230 |
width=width,
|
231 |
height=height,
|
@@ -233,51 +221,25 @@ def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width
|
|
233 |
joint_attention_kwargs={"scale": lora_scale},
|
234 |
).images[0]
|
235 |
|
236 |
-
clear_memory() # ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
237 |
return image, seed
|
238 |
|
239 |
except Exception as e:
|
240 |
-
|
241 |
-
raise
|
242 |
-
|
243 |
-
|
244 |
|
|
|
245 |
def leffa_predict(src_image_path, ref_image_path, control_type):
|
246 |
-
global mask_predictor, densepose_predictor, vt_model, pt_model, vt_inference, pt_inference
|
247 |
-
|
248 |
-
clear_memory()
|
249 |
-
|
250 |
try:
|
251 |
-
#
|
252 |
-
if control_type == "virtual_tryon"
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
pt_model = LeffaModel(
|
262 |
-
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
|
263 |
-
pretrained_model="./ckpts/pose_transfer.pth"
|
264 |
-
)
|
265 |
-
pt_model.to(device)
|
266 |
-
pt_inference = LeffaInference(model=pt_model)
|
267 |
-
|
268 |
-
if mask_predictor is None:
|
269 |
-
mask_predictor = AutoMasker(
|
270 |
-
densepose_path="./ckpts/densepose",
|
271 |
-
schp_path="./ckpts/schp",
|
272 |
-
)
|
273 |
-
|
274 |
-
if densepose_predictor is None:
|
275 |
-
densepose_predictor = DensePosePredictor(
|
276 |
-
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
|
277 |
-
weights_path="./ckpts/densepose/model_final_162be9.pkl",
|
278 |
-
)
|
279 |
-
|
280 |
-
# ์ด๋ฏธ์ง ์ฒ๋ฆฌ
|
281 |
src_image = Image.open(src_image_path)
|
282 |
ref_image = Image.open(ref_image_path)
|
283 |
src_image = resize_and_center(src_image, 768, 1024)
|
@@ -289,22 +251,18 @@ def leffa_predict(src_image_path, ref_image_path, control_type):
|
|
289 |
# Mask ์์ฑ
|
290 |
if control_type == "virtual_tryon":
|
291 |
src_image = src_image.convert("RGB")
|
292 |
-
mask =
|
293 |
else:
|
294 |
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
|
295 |
|
296 |
# DensePose ์์ธก
|
297 |
-
src_image_iuv_array =
|
298 |
-
src_image_seg_array =
|
299 |
-
src_image_iuv = Image.fromarray(src_image_iuv_array)
|
300 |
-
src_image_seg = Image.fromarray(src_image_seg_array)
|
301 |
|
302 |
if control_type == "virtual_tryon":
|
303 |
-
densepose =
|
304 |
-
inference = vt_inference
|
305 |
else:
|
306 |
-
densepose =
|
307 |
-
inference = pt_inference
|
308 |
|
309 |
# Leffa ๋ณํ ๋ฐ ์ถ๋ก
|
310 |
transform = LeffaTransform()
|
@@ -317,20 +275,22 @@ def leffa_predict(src_image_path, ref_image_path, control_type):
|
|
317 |
data = transform(data)
|
318 |
|
319 |
output = inference(data)
|
320 |
-
|
321 |
-
|
322 |
-
clear_memory()
|
323 |
-
return np.array(gen_image)
|
324 |
|
325 |
except Exception as e:
|
326 |
-
|
327 |
-
raise
|
328 |
|
|
|
329 |
def leffa_predict_vt(src_image_path, ref_image_path):
|
330 |
return leffa_predict(src_image_path, ref_image_path, "virtual_tryon")
|
331 |
|
|
|
332 |
def leffa_predict_pt(src_image_path, ref_image_path):
|
333 |
return leffa_predict(src_image_path, ref_image_path, "pose_transfer")
|
|
|
|
|
|
|
334 |
|
335 |
# Gradio ์ธํฐํ์ด์ค
|
336 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as demo:
|
|
|
16 |
import random
|
17 |
import gc
|
18 |
|
19 |
+
# ์์ ์ ์
|
20 |
MAX_SEED = 2**32 - 1
|
21 |
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
|
22 |
MODEL_LORA_REPO = "Motas/Flux_Fashion_Photography_Style"
|
23 |
CLOTHES_LORA_REPO = "prithivMLmods/Canopus-Clothing-Flux-LoRA"
|
24 |
|
25 |
+
# ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ๋ฅผ ์ํ ๋ฐ์ฝ๋ ์ดํฐ
|
26 |
+
def safe_model_call(func):
|
27 |
+
def wrapper(*args, **kwargs):
|
28 |
+
try:
|
29 |
+
clear_memory()
|
30 |
+
result = func(*args, **kwargs)
|
31 |
+
clear_memory()
|
32 |
+
return result
|
33 |
+
except Exception as e:
|
34 |
+
clear_memory()
|
35 |
+
print(f"Error in {func.__name__}: {str(e)}")
|
36 |
+
raise
|
37 |
+
return wrapper
|
38 |
|
39 |
+
# ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ํจ์
|
40 |
+
def clear_memory():
|
41 |
+
if torch.cuda.is_available():
|
42 |
+
torch.cuda.empty_cache()
|
43 |
+
torch.cuda.synchronize()
|
44 |
+
gc.collect()
|
45 |
|
46 |
+
def setup_environment():
|
47 |
+
# ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์ค์
|
48 |
+
torch.cuda.empty_cache()
|
49 |
+
gc.collect()
|
50 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'
|
51 |
+
torch.backends.cudnn.benchmark = True
|
52 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
53 |
+
torch.backends.cuda.max_split_size_mb = 128
|
54 |
+
|
55 |
+
# Hugging Face ํ ํฐ ์ค์
|
56 |
+
global HF_TOKEN
|
57 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
58 |
+
if HF_TOKEN is None:
|
59 |
+
raise ValueError("Please set the HF_TOKEN environment variable")
|
60 |
+
login(token=HF_TOKEN)
|
61 |
+
|
62 |
+
# CUDA ์ค์
|
63 |
+
global device
|
64 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
65 |
+
|
66 |
+
# ์ ์ญ ๋ณ์ ์ด๊ธฐํ
|
67 |
fashion_pipe = None
|
68 |
translator = None
|
69 |
mask_predictor = None
|
|
|
72 |
pt_model = None
|
73 |
vt_inference = None
|
74 |
pt_inference = None
|
75 |
+
device = None
|
76 |
+
HF_TOKEN = None
|
77 |
|
78 |
+
# ํ๊ฒฝ ์ค์ ์คํ
|
79 |
+
setup_environment()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
# ๋ชจ๋ธ ๊ด๋ฆฌ ํจ์๋ค
|
83 |
+
def initialize_fashion_pipe():
|
|
|
84 |
global fashion_pipe
|
85 |
if fashion_pipe is None:
|
86 |
+
clear_memory()
|
87 |
fashion_pipe = DiffusionPipeline.from_pretrained(
|
88 |
BASE_MODEL,
|
89 |
torch_dtype=torch.float16,
|
90 |
use_auth_token=HF_TOKEN
|
91 |
)
|
92 |
try:
|
93 |
+
fashion_pipe.enable_xformers_memory_efficient_attention()
|
94 |
except Exception as e:
|
95 |
print(f"Warning: Could not enable memory efficient attention: {e}")
|
96 |
fashion_pipe.enable_sequential_cpu_offload()
|
97 |
return fashion_pipe
|
98 |
|
99 |
+
@safe_model_call
|
|
|
100 |
def get_translator():
|
101 |
global translator
|
102 |
if translator is None:
|
|
|
105 |
device=device if device == "cuda" else -1)
|
106 |
return translator
|
107 |
|
108 |
+
@safe_model_call
|
|
|
109 |
def get_mask_predictor():
|
110 |
global mask_predictor
|
111 |
if mask_predictor is None:
|
|
|
115 |
)
|
116 |
return mask_predictor
|
117 |
|
118 |
+
@safe_model_call
|
119 |
def get_densepose_predictor():
|
120 |
global densepose_predictor
|
121 |
if densepose_predictor is None:
|
|
|
125 |
)
|
126 |
return densepose_predictor
|
127 |
|
128 |
+
@safe_model_call
|
129 |
def get_vt_model():
|
130 |
global vt_model, vt_inference
|
131 |
if vt_model is None:
|
132 |
+
vt_model = LeffaModel(
|
|
|
|
|
133 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
134 |
pretrained_model="./ckpts/virtual_tryon.pth"
|
135 |
)
|
136 |
+
vt_model = vt_model.half().to(device)
|
137 |
vt_inference = LeffaInference(model=vt_model)
|
138 |
return vt_model, vt_inference
|
139 |
|
140 |
+
@safe_model_call
|
141 |
def get_pt_model():
|
142 |
global pt_model, pt_inference
|
143 |
if pt_model is None:
|
144 |
+
pt_model = LeffaModel(
|
|
|
|
|
145 |
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
|
146 |
pretrained_model="./ckpts/pose_transfer.pth"
|
147 |
)
|
148 |
+
pt_model = pt_model.half().to(device)
|
149 |
pt_inference = LeffaInference(model=pt_model)
|
150 |
return pt_model, pt_inference
|
151 |
|
152 |
+
def load_lora(pipe, lora_path):
|
153 |
+
try:
|
154 |
+
pipe.unload_lora_weights()
|
155 |
+
except:
|
156 |
+
pass
|
157 |
+
try:
|
158 |
+
pipe.load_lora_weights(lora_path)
|
159 |
+
return pipe
|
160 |
+
except Exception as e:
|
161 |
+
print(f"Warning: Failed to load LoRA weights from {lora_path}: {e}")
|
162 |
+
return pipe
|
163 |
+
|
164 |
+
# ์ด๊ธฐ ์ค์ ํจ์
|
165 |
+
def setup():
|
166 |
+
# Leffa ์ฒดํฌํฌ์ธํธ ๋ค์ด๋ก๋
|
167 |
+
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
|
168 |
+
# ๊ธฐ๋ณธ ๋ชจ๋ธ ์ด๊ธฐํ
|
169 |
+
initialize_fashion_pipe()
|
170 |
|
171 |
+
# ์ ํธ๋ฆฌํฐ ํจ์
|
172 |
def contains_korean(text):
|
173 |
return any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text)
|
174 |
|
175 |
+
|
176 |
+
# ๋ฉ์ธ ๊ธฐ๋ฅ ํจ์๋ค
|
177 |
@spaces.GPU()
|
178 |
+
@safe_model_call
|
179 |
def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
180 |
try:
|
181 |
+
# ํ๊ธ ์ฒ๋ฆฌ
|
182 |
if contains_korean(prompt):
|
183 |
translator = get_translator()
|
184 |
translated = translator(prompt)[0]['translation_text']
|
|
|
186 |
else:
|
187 |
actual_prompt = prompt
|
188 |
|
189 |
+
# ํ์ดํ๋ผ์ธ ๊ฐ์ ธ์ค๊ธฐ
|
190 |
+
pipe = initialize_fashion_pipe()
|
191 |
|
192 |
+
# LoRA ์ค์
|
193 |
if mode == "Generate Model":
|
194 |
pipe = load_lora(pipe, MODEL_LORA_REPO)
|
195 |
trigger_word = "fashion photography, professional model"
|
|
|
197 |
pipe = load_lora(pipe, CLOTHES_LORA_REPO)
|
198 |
trigger_word = "upper clothing, fashion item"
|
199 |
|
200 |
+
# ํ๋ผ๋ฏธํฐ ์ ํ
|
201 |
+
width = min(width, 768)
|
202 |
+
height = min(height, 768)
|
203 |
+
steps = min(steps, 30)
|
204 |
|
205 |
+
# ์๋ ์ค์
|
206 |
if randomize_seed:
|
207 |
seed = random.randint(0, MAX_SEED)
|
208 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
209 |
|
210 |
+
# ์งํ๋ฅ ํ์
|
211 |
progress(0, "Starting fashion generation...")
|
212 |
|
213 |
+
# ์ด๋ฏธ์ง ์์ฑ
|
214 |
image = pipe(
|
215 |
prompt=f"{actual_prompt} {trigger_word}",
|
216 |
+
num_inference_steps=steps,
|
217 |
guidance_scale=cfg_scale,
|
218 |
width=width,
|
219 |
height=height,
|
|
|
221 |
joint_attention_kwargs={"scale": lora_scale},
|
222 |
).images[0]
|
223 |
|
|
|
224 |
return image, seed
|
225 |
|
226 |
except Exception as e:
|
227 |
+
print(f"Error in generate_fashion: {str(e)}")
|
228 |
+
raise
|
|
|
|
|
229 |
|
230 |
+
@safe_model_call
|
231 |
def leffa_predict(src_image_path, ref_image_path, control_type):
|
|
|
|
|
|
|
|
|
232 |
try:
|
233 |
+
# ๋ชจ๋ธ ์ด๊ธฐํ
|
234 |
+
if control_type == "virtual_tryon":
|
235 |
+
model, inference = get_vt_model()
|
236 |
+
else:
|
237 |
+
model, inference = get_pt_model()
|
238 |
+
|
239 |
+
mask_pred = get_mask_predictor()
|
240 |
+
dense_pred = get_densepose_predictor()
|
241 |
+
|
242 |
+
# ์ด๋ฏธ์ง ๋ก๋ ๋ฐ ์ ์ฒ๋ฆฌ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
src_image = Image.open(src_image_path)
|
244 |
ref_image = Image.open(ref_image_path)
|
245 |
src_image = resize_and_center(src_image, 768, 1024)
|
|
|
251 |
# Mask ์์ฑ
|
252 |
if control_type == "virtual_tryon":
|
253 |
src_image = src_image.convert("RGB")
|
254 |
+
mask = mask_pred(src_image, "upper")["mask"]
|
255 |
else:
|
256 |
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
|
257 |
|
258 |
# DensePose ์์ธก
|
259 |
+
src_image_iuv_array = dense_pred.predict_iuv(src_image_array)
|
260 |
+
src_image_seg_array = dense_pred.predict_seg(src_image_array)
|
|
|
|
|
261 |
|
262 |
if control_type == "virtual_tryon":
|
263 |
+
densepose = Image.fromarray(src_image_seg_array)
|
|
|
264 |
else:
|
265 |
+
densepose = Image.fromarray(src_image_iuv_array)
|
|
|
266 |
|
267 |
# Leffa ๋ณํ ๋ฐ ์ถ๋ก
|
268 |
transform = LeffaTransform()
|
|
|
275 |
data = transform(data)
|
276 |
|
277 |
output = inference(data)
|
278 |
+
return np.array(output["generated_image"][0])
|
|
|
|
|
|
|
279 |
|
280 |
except Exception as e:
|
281 |
+
print(f"Error in leffa_predict: {str(e)}")
|
282 |
+
raise
|
283 |
|
284 |
+
@safe_model_call
|
285 |
def leffa_predict_vt(src_image_path, ref_image_path):
|
286 |
return leffa_predict(src_image_path, ref_image_path, "virtual_tryon")
|
287 |
|
288 |
+
@safe_model_call
|
289 |
def leffa_predict_pt(src_image_path, ref_image_path):
|
290 |
return leffa_predict(src_image_path, ref_image_path, "pose_transfer")
|
291 |
+
|
292 |
+
# ์ด๊ธฐ ์ค์ ์คํ
|
293 |
+
setup()
|
294 |
|
295 |
# Gradio ์ธํฐํ์ด์ค
|
296 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as demo:
|