import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download, login
import spaces

# Hugging Face 토큰으로 로그인
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("Please set the HF_TOKEN environment variable")
login(token=HF_TOKEN)

# 이후 모델 다운로드
hf_hub_download(
    repo_id="black-forest-labs/FLUX.1-Redux-dev", 
    filename="flux1-redux-dev.safetensors", 
    local_dir="models/style_models",
    token=HF_TOKEN
)
hf_hub_download(
    repo_id="black-forest-labs/FLUX.1-Depth-dev", 
    filename="flux1-depth-dev.safetensors", 
    local_dir="models/diffusion_models",
    token=HF_TOKEN
)
hf_hub_download(
    repo_id="Comfy-Org/sigclip_vision_384", 
    filename="sigclip_vision_patch14_384.safetensors", 
    local_dir="models/clip_vision",
    token=HF_TOKEN
)
hf_hub_download(
    repo_id="Kijai/DepthAnythingV2-safetensors", 
    filename="depth_anything_v2_vitl_fp32.safetensors", 
    local_dir="models/depthanything",
    token=HF_TOKEN
)
hf_hub_download(
    repo_id="black-forest-labs/FLUX.1-dev", 
    filename="ae.safetensors", 
    local_dir="models/vae/FLUX1",
    token=HF_TOKEN
)
hf_hub_download(
    repo_id="comfyanonymous/flux_text_encoders", 
    filename="clip_l.safetensors", 
    local_dir="models/text_encoders",
    token=HF_TOKEN
)
t5_path = hf_hub_download(
    repo_id="comfyanonymous/flux_text_encoders", 
    filename="t5xxl_fp16.safetensors", 
    local_dir="models/text_encoders/t5",
    token=HF_TOKEN
)

def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
    try:
        return obj[index]
    except KeyError:
        return obj["result"][index]

def find_path(name: str, path: str = None) -> str:
    if path is None:
        path = os.getcwd()
    if name in os.listdir(path):
        path_name = os.path.join(path, name)
        print(f"{name} found: {path_name}")
        return path_name
    parent_directory = os.path.dirname(path)
    if parent_directory == path:
        return None
    return find_path(name, parent_directory)

def add_comfyui_directory_to_sys_path() -> None:
    comfyui_path = find_path("ComfyUI")
    if comfyui_path is not None and os.path.isdir(comfyui_path):
        sys.path.append(comfyui_path)
        print(f"'{comfyui_path}' added to sys.path")

def add_extra_model_paths() -> None:
    try:
        from main import load_extra_path_config
    except ImportError:
        from utils.extra_config import load_extra_path_config
    extra_model_paths = find_path("extra_model_paths.yaml")
    if extra_model_paths is not None:
        load_extra_path_config(extra_model_paths)
    else:
        print("Could not find the extra_model_paths config file.")

# Initialize paths
add_comfyui_directory_to_sys_path()
add_extra_model_paths()



def import_custom_nodes() -> None:
    import asyncio
    import execution
    from nodes import init_extra_nodes
    import server
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    server_instance = server.PromptServer(loop)
    execution.PromptQueue(server_instance)
    init_extra_nodes()

# Import all necessary nodes
from nodes import (
    StyleModelLoader,
    VAEEncode,
    NODE_CLASS_MAPPINGS,
    LoadImage,
    CLIPVisionLoader,
    SaveImage,
    VAELoader,
    CLIPVisionEncode,
    DualCLIPLoader,
    EmptyLatentImage,
    VAEDecode,
    UNETLoader,
    CLIPTextEncode,
)

# Initialize all constant nodes and models in global context
import_custom_nodes()

# Global variables for preloaded models and constants
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
CONST_1024 = intconstant.get_value(value=1024)

# Load CLIP
dualcliploader = DualCLIPLoader()
CLIP_MODEL = dualcliploader.load_clip(
    clip_name1="t5/t5xxl_fp16.safetensors",
    clip_name2="clip_l.safetensors",
    type="flux",
)

# Load VAE
vaeloader = VAELoader()
VAE_MODEL = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors")

# Load UNET
unetloader = UNETLoader()
UNET_MODEL = unetloader.load_unet(
    unet_name="flux1-depth-dev.safetensors", weight_dtype="default"
)

# Load CLIP Vision
clipvisionloader = CLIPVisionLoader()
CLIP_VISION_MODEL = clipvisionloader.load_clip(
    clip_name="sigclip_vision_patch14_384.safetensors"
)

# Load Style Model
stylemodelloader = StyleModelLoader()
STYLE_MODEL = stylemodelloader.load_style_model(
    style_model_name="flux1-redux-dev.safetensors"
)

# Initialize samplers
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
SAMPLER = ksamplerselect.get_sampler(sampler_name="euler")

# Initialize depth model
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]()
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS["DownloadAndLoadDepthAnythingV2Model"]()
DEPTH_MODEL = downloadandloaddepthanythingv2model.loadmodel(
    model="depth_anything_v2_vitl_fp32.safetensors"
)

# Initialize other nodes
cliptextencode = CLIPTextEncode()
loadimage = LoadImage()
vaeencode = VAEEncode()
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
instructpixtopixconditioning = NODE_CLASS_MAPPINGS["InstructPixToPixConditioning"]()
clipvisionencode = CLIPVisionEncode()
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]()
emptylatentimage = EmptyLatentImage()
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()        
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
vaedecode = VAEDecode()
cr_text = NODE_CLASS_MAPPINGS["CR Text"]()
saveimage = SaveImage()
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]()
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()

@spaces.GPU
def generate_image(prompt, structure_image, style_image, depth_strength=15, style_strength=0.5, progress=gr.Progress(track_tqdm=True)) -> str:
    """Main generation function that processes inputs and returns the path to the generated image."""
    with torch.inference_mode():
        # Set up CLIP
        clip_switch = cr_clip_input_switch.switch(
            Input=1,
            clip1=get_value_at_index(CLIP_MODEL, 0),
            clip2=get_value_at_index(CLIP_MODEL, 0),
        )
        
        # Encode text
        text_encoded = cliptextencode.encode(
            text=prompt,
            clip=get_value_at_index(clip_switch, 0),
        )
        empty_text = cliptextencode.encode(
            text="",
            clip=get_value_at_index(clip_switch, 0),
        )
        
        # Process structure image
        structure_img = loadimage.load_image(image=structure_image)
        
        # Resize image
        resized_img = imageresize.execute(
            width=get_value_at_index(CONST_1024, 0),
            height=get_value_at_index(CONST_1024, 0),
            interpolation="bicubic",
            method="keep proportion",
            condition="always",
            multiple_of=16,
            image=get_value_at_index(structure_img, 0),
        )
        
        # Get image size
        size_info = getimagesizeandcount.getsize(
            image=get_value_at_index(resized_img, 0)
        )
        
        # Encode VAE
        vae_encoded = vaeencode.encode(
            pixels=get_value_at_index(size_info, 0),
            vae=get_value_at_index(VAE_MODEL, 0),
        )
        
        # Process depth
        depth_processed = depthanything_v2.process(
            da_model=get_value_at_index(DEPTH_MODEL, 0),
            images=get_value_at_index(size_info, 0),
        )
        
        # Apply Flux guidance
        flux_guided = fluxguidance.append(
            guidance=depth_strength,
            conditioning=get_value_at_index(text_encoded, 0),
        )
        
        # Process style image
        style_img = loadimage.load_image(image=style_image)
        
        # Encode style with CLIP Vision
        style_encoded = clipvisionencode.encode(
            crop="center",
            clip_vision=get_value_at_index(CLIP_VISION_MODEL, 0),
            image=get_value_at_index(style_img, 0),
        )
        
        # Set up conditioning
        conditioning = instructpixtopixconditioning.encode(
            positive=get_value_at_index(flux_guided, 0),
            negative=get_value_at_index(empty_text, 0),
            vae=get_value_at_index(VAE_MODEL, 0),
            pixels=get_value_at_index(depth_processed, 0),
        )
        
        # Apply style
        style_applied = stylemodelapplyadvanced.apply_stylemodel(
            strength=style_strength,
            conditioning=get_value_at_index(conditioning, 0),
            style_model=get_value_at_index(STYLE_MODEL, 0),
            clip_vision_output=get_value_at_index(style_encoded, 0),
        )
        
        # Set up empty latent
        empty_latent = emptylatentimage.generate(
            width=get_value_at_index(resized_img, 1),
            height=get_value_at_index(resized_img, 2),
            batch_size=1,
        )
        
        # Set up guidance
        guided = basicguider.get_guider(
            model=get_value_at_index(UNET_MODEL, 0),
            conditioning=get_value_at_index(style_applied, 0),
        )
        
        # Set up scheduler
        schedule = basicscheduler.get_sigmas(
            scheduler="simple",
            steps=28,
            denoise=1,
            model=get_value_at_index(UNET_MODEL, 0),
        )
        
        # Generate random noise
        noise = randomnoise.get_noise(noise_seed=random.randint(1, 2**64))
        
        # Sample
        sampled = samplercustomadvanced.sample(
            noise=get_value_at_index(noise, 0),
            guider=get_value_at_index(guided, 0),
            sampler=get_value_at_index(SAMPLER, 0),
            sigmas=get_value_at_index(schedule, 0),
            latent_image=get_value_at_index(empty_latent, 0),
        )
        
        # Decode VAE
        decoded = vaedecode.decode(
            samples=get_value_at_index(sampled, 0),
            vae=get_value_at_index(VAE_MODEL, 0),
        )
        
        # Save image
        prefix = cr_text.text_multiline(text="Virtual_TryOn")
        
        saved = saveimage.save_images(
            filename_prefix=get_value_at_index(prefix, 0),
            images=get_value_at_index(decoded, 0),
        )
        saved_path = f"output/{saved['ui']['images'][0]['filename']}"
        return saved_path

# Create Gradio interface
examples = [
    ["person wearing fashionable clothing", "f1.webp", "f11.webp", 15, 0.6],
    ["person wearing elegant dress", "f2.webp", "f21.webp", 15, 0.5],
    ["person wearing casual outfit", "f3.webp", "f31.webp", 15, 0.5],
]

output_image = gr.Image(label="Virtual Try-On Result")

with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as app:
    gr.Markdown("# Style Generator")
    gr.Markdown("Upload your photo and try on different clothing items virtually using AI. The system will generate an image of you wearing the selected clothing while maintaining your pose and appearance.")
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(
                label="Style Description", 
                placeholder="Describe the desired style (e.g., 'person wearing elegant dress')"
            )
            with gr.Row():
                with gr.Group():
                    structure_image = gr.Image(
                        label="Your Photo (Full-body)", 
                        type="filepath"
                    )
                    gr.Markdown("*Upload a clear, well-lit full-body photo*")
                    depth_strength = gr.Slider(
                        minimum=0, 
                        maximum=50, 
                        value=15, 
                        label="Fitting Strength"
                    )
                with gr.Group():
                    style_image = gr.Image(
                        label="Clothing Item", 
                        type="filepath"
                    )
                    gr.Markdown("*Upload the clothing item you want to try on*")
                    style_strength = gr.Slider(
                        minimum=0, 
                        maximum=1, 
                        value=0.5, 
                        label="Style Transfer Strength"
                    )
            generate_btn = gr.Button("Generate Try-On")
        
        with gr.Column():
            output_image = gr.Image(label="Virtual Try-On Result")

    # Examples 섹션을 Row 밖으로 이동하고 수정
    gr.Examples(
        examples=[
            ["person wearing fashionable clothing", "f1.webp", "f11.webp", 15, 0.6],
            ["person wearing elegant dress", "f2.webp", "f21.webp", 15, 0.5],
            ["person wearing casual outfit", "f3.webp", "f31.webp", 15, 0.5],
        ],
        inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength],
        outputs=output_image,
        fn=generate_image,
        cache_examples=False,  # 캐시 비활성화
        run_on_click=True     # 클릭 시 자동 실행
    )
    
    generate_btn.click(
        fn=generate_image,
        inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength],
        outputs=output_image
    )