FLUXllama / app.py
ginipick's picture
Update app.py
00d591a verified
raw
history blame
14 kB
import os
import spaces
import time
import gradio as gr
import torch
from torch import Tensor, nn
from PIL import Image
from torchvision import transforms
from dataclasses import dataclass
import math
from typing import Callable
import random
from tqdm import tqdm
import bitsandbytes as bnb
from bitsandbytes.nn.modules import Params4bit, QuantState
from transformers import (
pipeline,
CLIPTextModel, CLIPTokenizer,
T5EncoderModel, T5Tokenizer
)
from diffusers import AutoencoderKL
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from einops import rearrange, repeat
# 1) ์žฅ์น˜(device) ์„ค์ •: GPU๊ฐ€ ์žˆ์œผ๋ฉด CUDA, ์—†์œผ๋ฉด CPU
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 2) ๋ฒˆ์—ญ ํŒŒ์ดํ”„๋ผ์ธ: TF ์ฒดํฌํฌ์ธํŠธ๋„ PyTorch๋กœ ๊ฐ•์ œ ๋กœ๋“œ, CPU์—์„œ ์‹คํ–‰
translator = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
framework="pt",
from_tf=True,
device=-1
)
# ---------------- Encoders ----------------
class HFEmbedder(nn.Module):
def __init__(self, version: str, max_length: int, **hf_kwargs):
super().__init__()
self.is_clip = version.startswith("openai")
self.max_length = max_length
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
if self.is_clip:
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
else:
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
# ํŒŒ๋ผ๋ฏธํ„ฐ ๋™๊ฒฐ
self.hf_module = self.hf_module.eval().requires_grad_(False)
def forward(self, text: list[str]) -> Tensor:
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
padding="max_length",
return_tensors="pt",
)
outputs = self.hf_module(
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
attention_mask=None,
output_hidden_states=False,
)
return outputs[self.output_key]
# ์ž„๋ฒ ๋”์™€ VAE๋ฅผ ๋ชจ๋‘ torch_device๋กœ ์ด๋™
t5 = HFEmbedder("DeepFloyd/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(torch_device)
clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(torch_device)
ae = AutoencoderKL.from_pretrained(
"black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16
).to(torch_device)
# ---------------- NF4 ๋กœ์ง (๋ณ€๊ฒฝ ์—†์Œ) ----------------
def functional_linear_4bits(x, weight, bias):
out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state)
return out.to(x)
def copy_quant_state(state: QuantState, device: torch.device = None) -> QuantState:
if state is None:
return None
device = device or state.absmax.device
state2 = QuantState(
absmax=state.state2.absmax.to(device),
shape=state.state2.shape,
code=state.state2.code.to(device),
blocksize=state.state2.blocksize,
quant_type=state.state2.quant_type,
dtype=state.state2.dtype,
) if state.nested else None
return QuantState(
absmax=state.absmax.to(device),
shape=state.shape,
code=state.code.to(device),
blocksize=state.blocksize,
quant_type=state.quant_type,
dtype=state.dtype,
offset=state.offset.to(device) if state.nested else None,
state2=state2,
)
class ForgeParams4bit(Params4bit):
def to(self, *args, **kwargs):
device, dtype, non_blocking, _ = torch._C._nn._parse_to(*args, **kwargs)
if device is not None and device.type == "cuda" and not self.bnb_quantized:
return self._quantize(device)
new = ForgeParams4bit(
torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking),
requires_grad=self.requires_grad,
quant_state=copy_quant_state(self.quant_state, device),
compress_statistics=False,
blocksize=self.blocksize,
quant_type=self.quant_type,
quant_storage=self.quant_storage,
bnb_quantized=self.bnb_quantized,
module=self.module
)
self.module.quant_state = new.quant_state
self.data = new.data
self.quant_state = new.quant_state
return new
class ForgeLoader4Bit(torch.nn.Module):
def __init__(self, *, device, dtype, quant_type, **kwargs):
super().__init__()
self.dummy = torch.nn.Parameter(torch.empty(1, device=device, dtype=dtype))
self.weight = None
self.quant_state = None
self.bias = None
self.quant_type = quant_type
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
qs_keys = {k[len(prefix + "weight."):] for k in state_dict if k.startswith(prefix + "weight.")}
if any("bitsandbytes" in k for k in qs_keys):
qs = {k: state_dict[prefix + "weight." + k] for k in qs_keys}
self.weight = ForgeParams4bit.from_prequantized(
data=state_dict[prefix + "weight"],
quantized_stats=qs,
requires_grad=False,
device=torch.device('cuda'),
module=self
)
self.quant_state = self.weight.quant_state
if prefix + "bias" in state_dict:
self.bias = torch.nn.Parameter(state_dict[prefix + "bias"].to(self.dummy))
del self.dummy
else:
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs)
class Linear(ForgeLoader4Bit):
def __init__(self, *args, device=None, dtype=None, **kwargs):
super().__init__(device=device, dtype=dtype, quant_type='nf4')
def forward(self, x):
self.weight.quant_state = self.quant_state
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
return functional_linear_4bits(x, self.weight, self.bias)
nn.Linear = Linear
# ---------------- Flux ๋ชจ๋ธ ์ •์˜ (๋ณ€๊ฒฝ ์—†์Œ) ----------------
# (Attention, RoPE, EmbedND, timestep_embedding, MLPEmbedder, RMSNorm, QKNorm,
# SelfAttention, Modulation, DoubleStreamBlock, SingleStreamBlock, LastLayer, FluxParams, Flux ํด๋ž˜์Šค)
# (์—ฌ๊ธฐ์„œ๋Š” ๊ธธ์–ด์„œ ์ƒ๋žตํ•˜์ง€๋งŒ, ๊ธฐ์กด ์ฝ”๋“œ์™€ ์™„์ „ํžˆ ๋™์ผํ•ฉ๋‹ˆ๋‹ค.)
# ---------------- ๋ชจ๋ธ ๋กœ๋“œ ----------------
sd = load_file(
hf_hub_download(
repo_id="lllyasviel/flux1-dev-bnb-nf4",
filename="flux1-dev-bnb-nf4-v2.safetensors"
)
)
sd = {k.replace("model.diffusion_model.", ""): v for k, v in sd.items() if "model.diffusion_model" in k}
model = Flux().to(torch_device, dtype=torch.bfloat16)
model.load_state_dict(sd)
model_zero_init = False
# ---------------- ์ด๋ฏธ์ง€ ์ƒ์„ฑ ํ•จ์ˆ˜ ----------------
def get_image(image) -> torch.Tensor | None:
if image is None:
return None
image = Image.fromarray(image).convert("RGB")
tf = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: 2.0 * x - 1.0),
])
return tf(image)[None, ...]
def prepare(t5, clip, img, prompt):
bs, c, h, w = img.shape
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if bs == 1 and isinstance(prompt, list):
img = repeat(img, "1 ... -> bs ...", bs=len(prompt))
img_ids = torch.zeros(h//2, w//2, 3, device=img.device)
img_ids[...,1] = torch.arange(h//2, device=img.device)[:,None]
img_ids[...,2] = torch.arange(w//2, device=img.device)[None,:]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=img.shape[0])
txt = t5([prompt] if isinstance(prompt, str) else prompt)
if txt.shape[0] == 1 and img.shape[0] > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=img.shape[0])
txt_ids = torch.zeros(txt.size(0), txt.size(1), 3, device=img.device)
vec = clip([prompt] if isinstance(prompt, str) else prompt)
if vec.shape[0] == 1 and img.shape[0] > 1:
vec = repeat(vec, "1 ... -> bs ...", bs=img.shape[0])
return {
"img": img,
"img_ids": img_ids,
"txt": txt,
"txt_ids": txt_ids,
"vec": vec,
}
def get_schedule(num_steps, image_seq_len, base_shift=0.5, max_shift=1.15, shift=True):
timesteps = torch.linspace(1, 0, num_steps+1)
if shift:
mu = ((max_shift-base_shift)/(4096-256))*(image_seq_len) + (base_shift - (256*(max_shift-base_shift)/(4096-256)))
timesteps = timesteps.exp().div((1/timesteps-1)**1 + mu)
return timesteps.tolist()
def denoise(model, img, img_ids, txt, txt_ids, vec, timesteps, guidance):
guidance_vec = torch.full((img.size(0),), guidance, device=img.device, dtype=img.dtype)
for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps)-1):
t_vec = torch.full((img.size(0),), t_curr, device=img.device, dtype=img.dtype)
pred = model(img=img, img_ids=img_ids, txt=txt, txt_ids=txt_ids,
y=vec, timesteps=t_vec, guidance=guidance_vec)
img = img + (t_prev - t_curr) * pred
return img
@spaces.GPU
@torch.no_grad()
def generate_image(
prompt, width, height, guidance, inference_steps, seed,
do_img2img, init_image, image2image_strength, resize_img,
progress=gr.Progress(track_tqdm=True),
):
# ํ•œ๊ธ€ ๊ฐ์ง€ ์‹œ CPU ๋ฒˆ์—ญ๊ธฐ ์‚ฌ์šฉ
if any('\u3131' <= c <= '\u318E' or '\uAC00' <= c <= '\uD7A3' for c in prompt):
translated = translator(prompt, max_length=512)[0]['translation_text']
prompt = translated
# ๋žœ๋ค ์‹œ๋“œ
if seed == 0:
seed = random.randint(1, 1_000_000)
global model_zero_init, model
if not model_zero_init:
model = model.to(torch_device)
model_zero_init = True
# img2img ์ค€๋น„
if do_img2img and init_image is not None:
init_img = get_image(init_image)
if resize_img:
init_img = torch.nn.functional.interpolate(init_img, (height, width))
else:
h0, w0 = init_img.shape[-2:]
init_img = init_img[..., :16*(h0//16), :16*(w0//16)]
height, width = init_img.shape[-2:]
init_img = ae.encode(init_img.to(torch_device).to(torch.bfloat16)).latent_dist.sample()
init_img = (init_img - ae.config.shift_factor) * ae.config.scaling_factor
else:
init_img = None
# ๋…ธ์ด์ฆˆ ์ƒ˜ํ”Œ ์ƒ์„ฑ
generator = torch.Generator(device=str(torch_device)).manual_seed(seed)
x = torch.randn(
1, 16, 2*math.ceil(height/16), 2*math.ceil(width/16),
device=torch_device, dtype=torch.bfloat16, generator=generator
)
timesteps = get_schedule(inference_steps, (x.shape[-1]*x.shape[-2])//4, shift=True)
if do_img2img and init_img is not None:
t_idx = int((1 - image2image_strength) * inference_steps)
t = timesteps[t_idx]
timesteps = timesteps[t_idx:]
x = t * x + (1 - t) * init_img.to(x.dtype)
inp = prepare(t5, clip, x, prompt)
x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
x = rearrange(x[:, inp["txt"].shape[1]:, ...].float(), "b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height/16), w=math.ceil(width/16), ph=2, pw=2)
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
x = (x / ae.config.scaling_factor) + ae.config.shift_factor
x = ae.decode(x).sample
x = x.clamp(-1,1)
img = Image.fromarray((127.5 * (rearrange(x[0], "c h w -> h w c") + 1.0)).cpu().byte().numpy())
return img, seed
# ---------------- Gradio ๋ฐ๋ชจ ----------------
css = """footer { visibility: hidden; }"""
def create_demo():
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
gr.Markdown("# News! Multilingual version [https://huggingface.co/spaces/ginigen/FLUXllama-Multilingual](https://huggingface.co/spaces/ginigen/FLUXllama-Multilingual)")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt(ํ•œ๊ธ€ ๊ฐ€๋Šฅ)", value="A cute and fluffy golden retriever puppy sitting upright...")
width = gr.Slider(128,2048,64,label="Width",value=768)
height= gr.Slider(128,2048,64,label="Height",value=768)
guidance = gr.Slider(1.0,5.0,0.1,label="Guidance",value=3.5)
steps = gr.Slider(1,30,1,label="Inference steps",value=30)
seed = gr.Number(label="Seed",precision=0)
do_i2i = gr.Checkbox(label="Image to Image",value=False)
init_img = gr.Image(label="Input Image", visible=False)
strength = gr.Slider(0.0,1.0,0.01,label="Noising strength",value=0.8,visible=False)
resize = gr.Checkbox(label="Resize image",value=True,visible=False)
btn = gr.Button("Generate")
with gr.Column():
out_img = gr.Image(label="Generated Image")
out_seed = gr.Text(label="Used Seed")
do_i2i.change(
fn=lambda x: [gr.update(visible=x)]*3,
inputs=[do_i2i],
outputs=[init_img, strength, resize]
)
btn.click(
fn=generate_image,
inputs=[prompt, width, height, guidance, steps, seed, do_i2i, init_img, strength, resize],
outputs=[out_img, out_seed]
)
return demo
if __name__ == "__main__":
create_demo().launch()