Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,32 +1,49 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import spaces
|
| 4 |
from duckduckgo_search import DDGS
|
| 5 |
import time
|
| 6 |
import torch
|
| 7 |
from datetime import datetime
|
|
|
|
| 8 |
|
| 9 |
-
# Initialize model and tokenizer
|
| 10 |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
tokenizer.pad_token = tokenizer.eos_token
|
| 13 |
|
| 14 |
-
#
|
| 15 |
model = AutoModelForCausalLM.from_pretrained(
|
| 16 |
model_name,
|
| 17 |
-
|
|
|
|
| 18 |
low_cpu_mem_usage=True,
|
| 19 |
-
torch_dtype=torch.float32
|
| 20 |
)
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
"""Get web search results using DuckDuckGo"""
|
| 24 |
try:
|
| 25 |
with DDGS() as ddgs:
|
| 26 |
results = list(ddgs.text(query, max_results=max_results))
|
| 27 |
return [{
|
| 28 |
"title": result.get("title", ""),
|
| 29 |
-
"snippet": result["body"],
|
| 30 |
"url": result["href"],
|
| 31 |
"date": result.get("published", "")
|
| 32 |
} for result in results]
|
|
@@ -34,19 +51,10 @@ def get_web_results(query, max_results=5): # Increased to 5 for better context
|
|
| 34 |
return []
|
| 35 |
|
| 36 |
def format_prompt(query, context):
|
| 37 |
-
"""Format the prompt with web context"""
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
return f"""
|
| 41 |
-
Current Time: {current_time}
|
| 42 |
-
|
| 43 |
-
Query: {query}
|
| 44 |
-
|
| 45 |
-
Web Context:
|
| 46 |
-
{context_lines}
|
| 47 |
-
|
| 48 |
-
Provide a detailed answer in markdown format. Include relevant information from sources and cite them using [1], [2], etc.
|
| 49 |
-
Answer:"""
|
| 50 |
|
| 51 |
def format_sources(web_results):
|
| 52 |
"""Format sources with more details"""
|
|
@@ -71,69 +79,81 @@ def format_sources(web_results):
|
|
| 71 |
return sources_html
|
| 72 |
|
| 73 |
def generate_answer(prompt):
|
| 74 |
-
"""Generate answer using the DeepSeek model"""
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
attention_mask=inputs.attention_mask,
|
| 87 |
-
max_new_tokens=128, # Reduced for faster generation on CPU
|
| 88 |
-
temperature=0.7,
|
| 89 |
-
top_p=0.95,
|
| 90 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 91 |
-
do_sample=True,
|
| 92 |
-
early_stopping=True,
|
| 93 |
-
num_beams=1 # Reduced beam search for faster generation
|
| 94 |
-
)
|
| 95 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 96 |
|
| 97 |
def process_query(query, history):
|
| 98 |
-
"""Process user query with streaming effect"""
|
| 99 |
try:
|
| 100 |
if history is None:
|
| 101 |
history = []
|
| 102 |
-
|
| 103 |
# Get web results first
|
| 104 |
web_results = get_web_results(query)
|
| 105 |
sources_html = format_sources(web_results)
|
| 106 |
|
| 107 |
-
|
| 108 |
yield {
|
| 109 |
-
answer_output: gr.Markdown("*Searching
|
| 110 |
sources_output: gr.HTML(sources_html),
|
| 111 |
-
search_btn: gr.Button("
|
| 112 |
-
chat_history_display:
|
| 113 |
}
|
| 114 |
|
| 115 |
-
# Generate answer
|
| 116 |
prompt = format_prompt(query, web_results)
|
| 117 |
answer = generate_answer(prompt)
|
| 118 |
-
final_answer = answer.split("Answer:")[-1].strip()
|
| 119 |
|
| 120 |
-
|
|
|
|
| 121 |
yield {
|
| 122 |
-
answer_output: gr.Markdown(
|
| 123 |
sources_output: gr.HTML(sources_html),
|
| 124 |
search_btn: gr.Button("Search", interactive=True),
|
| 125 |
-
chat_history_display:
|
| 126 |
}
|
| 127 |
-
except Exception as e:
|
| 128 |
-
error_message = str(e)
|
| 129 |
-
if "GPU quota" in error_message:
|
| 130 |
-
error_message = "⚠️ GPU quota exceeded. Please try again later when the daily quota resets."
|
| 131 |
|
|
|
|
|
|
|
| 132 |
yield {
|
| 133 |
-
answer_output: gr.Markdown(
|
| 134 |
-
sources_output: gr.HTML(
|
| 135 |
search_btn: gr.Button("Search", interactive=True),
|
| 136 |
-
chat_history_display: history + [[query,
|
| 137 |
}
|
| 138 |
|
| 139 |
# Update the CSS for better contrast and readability
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
| 3 |
import spaces
|
| 4 |
from duckduckgo_search import DDGS
|
| 5 |
import time
|
| 6 |
import torch
|
| 7 |
from datetime import datetime
|
| 8 |
+
import gc # For manual garbage collection
|
| 9 |
|
| 10 |
+
# Initialize model and tokenizer with optimizations
|
| 11 |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
| 12 |
+
|
| 13 |
+
# Load config first to set optimal parameters
|
| 14 |
+
config = AutoConfig.from_pretrained(model_name)
|
| 15 |
+
config.use_cache = True # Enable KV-caching for faster inference
|
| 16 |
+
|
| 17 |
+
# Initialize tokenizer with optimizations
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 19 |
+
model_name,
|
| 20 |
+
model_max_length=256, # Reduced for faster processing
|
| 21 |
+
padding_side="left",
|
| 22 |
+
truncation_side="left",
|
| 23 |
+
)
|
| 24 |
tokenizer.pad_token = tokenizer.eos_token
|
| 25 |
|
| 26 |
+
# Load model with optimizations
|
| 27 |
model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
model_name,
|
| 29 |
+
config=config,
|
| 30 |
+
device_map="cpu",
|
| 31 |
low_cpu_mem_usage=True,
|
| 32 |
+
torch_dtype=torch.float32,
|
| 33 |
)
|
| 34 |
|
| 35 |
+
# Enable model optimizations
|
| 36 |
+
model.eval() # Set to evaluation mode
|
| 37 |
+
torch.set_num_threads(4) # Limit CPU threads for better performance
|
| 38 |
+
|
| 39 |
+
def get_web_results(query, max_results=3): # Reduced max results
|
| 40 |
"""Get web search results using DuckDuckGo"""
|
| 41 |
try:
|
| 42 |
with DDGS() as ddgs:
|
| 43 |
results = list(ddgs.text(query, max_results=max_results))
|
| 44 |
return [{
|
| 45 |
"title": result.get("title", ""),
|
| 46 |
+
"snippet": result["body"][:200], # Limit snippet length
|
| 47 |
"url": result["href"],
|
| 48 |
"date": result.get("published", "")
|
| 49 |
} for result in results]
|
|
|
|
| 51 |
return []
|
| 52 |
|
| 53 |
def format_prompt(query, context):
|
| 54 |
+
"""Format the prompt with web context - optimized version"""
|
| 55 |
+
context_lines = '\n'.join([f'[{i+1}] {res["snippet"]}'
|
| 56 |
+
for i, res in enumerate(context)])
|
| 57 |
+
return f"""Answer this query using the context: {query}\n\nContext:\n{context_lines}\n\nAnswer:"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
def format_sources(web_results):
|
| 60 |
"""Format sources with more details"""
|
|
|
|
| 79 |
return sources_html
|
| 80 |
|
| 81 |
def generate_answer(prompt):
|
| 82 |
+
"""Generate answer using the DeepSeek model - optimized version"""
|
| 83 |
+
try:
|
| 84 |
+
# Clear CUDA cache and garbage collect
|
| 85 |
+
if torch.cuda.is_available():
|
| 86 |
+
torch.cuda.empty_cache()
|
| 87 |
+
gc.collect()
|
| 88 |
+
|
| 89 |
+
inputs = tokenizer(
|
| 90 |
+
prompt,
|
| 91 |
+
return_tensors="pt",
|
| 92 |
+
padding=True,
|
| 93 |
+
truncation=True,
|
| 94 |
+
max_length=256,
|
| 95 |
+
return_attention_mask=True
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
with torch.no_grad(): # Disable gradient calculation
|
| 99 |
+
outputs = model.generate(
|
| 100 |
+
inputs.input_ids,
|
| 101 |
+
attention_mask=inputs.attention_mask,
|
| 102 |
+
max_new_tokens=100, # Further reduced for speed
|
| 103 |
+
temperature=0.7,
|
| 104 |
+
top_p=0.95,
|
| 105 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 106 |
+
do_sample=True,
|
| 107 |
+
num_beams=1,
|
| 108 |
+
early_stopping=True,
|
| 109 |
+
no_repeat_ngram_size=3,
|
| 110 |
+
length_penalty=1.0
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 114 |
+
return response.split('Answer:')[-1].strip()
|
| 115 |
|
| 116 |
+
except Exception as e:
|
| 117 |
+
return f"Error generating response: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
def process_query(query, history):
|
| 120 |
+
"""Process user query with optimized streaming effect"""
|
| 121 |
try:
|
| 122 |
if history is None:
|
| 123 |
history = []
|
| 124 |
+
|
| 125 |
# Get web results first
|
| 126 |
web_results = get_web_results(query)
|
| 127 |
sources_html = format_sources(web_results)
|
| 128 |
|
| 129 |
+
# Show searching status
|
| 130 |
yield {
|
| 131 |
+
answer_output: gr.Markdown("*Searching and generating response...*"),
|
| 132 |
sources_output: gr.HTML(sources_html),
|
| 133 |
+
search_btn: gr.Button("Please wait...", interactive=False),
|
| 134 |
+
chat_history_display: history + [[query, "*Processing...*"]]
|
| 135 |
}
|
| 136 |
|
| 137 |
+
# Generate answer with timeout protection
|
| 138 |
prompt = format_prompt(query, web_results)
|
| 139 |
answer = generate_answer(prompt)
|
|
|
|
| 140 |
|
| 141 |
+
# Update with final answer
|
| 142 |
+
final_history = history + [[query, answer]]
|
| 143 |
yield {
|
| 144 |
+
answer_output: gr.Markdown(answer),
|
| 145 |
sources_output: gr.HTML(sources_html),
|
| 146 |
search_btn: gr.Button("Search", interactive=True),
|
| 147 |
+
chat_history_display: final_history
|
| 148 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
except Exception as e:
|
| 151 |
+
error_msg = f"Error: {str(e)}"
|
| 152 |
yield {
|
| 153 |
+
answer_output: gr.Markdown(error_msg),
|
| 154 |
+
sources_output: gr.HTML("<div>Error fetching sources</div>"),
|
| 155 |
search_btn: gr.Button("Search", interactive=True),
|
| 156 |
+
chat_history_display: history + [[query, error_msg]]
|
| 157 |
}
|
| 158 |
|
| 159 |
# Update the CSS for better contrast and readability
|