Spaces:
Paused
Paused
| import subprocess # ๐ฅฒ | |
| import os | |
| import time | |
| import torch | |
| import numpy as np | |
| import gradio as gr | |
| import spaces | |
| import re | |
| import json | |
| from datetime import datetime | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from duckduckgo_search import DDGS | |
| from pydantic import BaseModel | |
| # ----------------------- Setup & Dependency Installation ----------------------- # | |
| try: | |
| subprocess.run(['git', 'lfs', 'install'], check=True) | |
| if not os.path.exists('Kokoro-82M'): | |
| subprocess.run(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M'], check=True) | |
| try: | |
| subprocess.run(['apt-get', 'update'], check=True) | |
| subprocess.run(['apt-get', 'install', '-y', 'espeak'], check=True) | |
| except subprocess.CalledProcessError: | |
| print("Warning: Could not install espeak. Trying espeak-ng...") | |
| try: | |
| subprocess.run(['apt-get', 'install', '-y', 'espeak-ng'], check=True) | |
| except subprocess.CalledProcessError: | |
| print("Warning: Could not install espeak or espeak-ng. TTS functionality may be limited.") | |
| except Exception as e: | |
| print(f"Warning: Initial setup error: {str(e)}") | |
| print("Continuing with limited functionality...") | |
| # ----------------------- Global Variables ----------------------- # | |
| # VOICE_CHOICES ์ ์ (TTS๊ฐ ์ด๊ธฐํ๋์ง ์๋๋ผ๋ ๊ธฐ๋ณธ๊ฐ ์ ๊ณต) | |
| VOICE_CHOICES = { | |
| '๐บ๐ธ Female (Default)': 'af', | |
| '๐บ๐ธ Bella': 'af_bella', | |
| '๐บ๐ธ Sarah': 'af_sarah', | |
| '๐บ๐ธ Nicole': 'af_nicole' | |
| } | |
| TTS_ENABLED = False # ์ด๊ธฐ TTS ๋ชจ๋ ๋ถ๋ฌ์ค๊ธฐ ์คํจ ์ ๊ธฐ๋ณธ์ ์ผ๋ก ๋นํ์ฑํ | |
| # ----------------------- Model and Tokenizer Initialization ----------------------- # | |
| model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| def init_models(): | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| device_map="auto", | |
| offload_folder="offload", | |
| low_cpu_mem_usage=True, | |
| torch_dtype=torch.float16 | |
| ) | |
| return model | |
| # ----------------------- Kokoro TTS Initialization ----------------------- # | |
| try: | |
| import sys | |
| sys.path.append('Kokoro-82M') | |
| from models import build_model | |
| from kokoro import generate | |
| TTS_ENABLED = True | |
| except Exception as e: | |
| print(f"Warning: Could not initialize Kokoro TTS: {str(e)}") | |
| TTS_ENABLED = False | |
| # ----------------------- Web Search Functions ----------------------- # | |
| def get_web_results(query, max_results=5): | |
| try: | |
| with DDGS() as ddgs: | |
| results = list(ddgs.text(query, max_results=max_results)) | |
| return [{ | |
| "title": result.get("title", ""), | |
| "snippet": result["body"], | |
| "url": result["href"], | |
| "date": result.get("published", "") | |
| } for result in results] | |
| except Exception as e: | |
| return [] | |
| def format_prompt(query, context): | |
| current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for res in context]) | |
| return f"""You are an intelligent search assistant. Answer the user's query using the provided web context. | |
| Current Time: {current_time} | |
| Important: For election-related queries, please distinguish clearly between different election years and types (presidential vs. non-presidential). Only use information from the provided web context. | |
| Query: {query} | |
| Web Context: | |
| {context_lines} | |
| Provide a detailed answer in markdown format. Include relevant information from sources and cite them using [1], [2], etc. If the query is about elections, clearly specify which year and type of election you're discussing. | |
| Answer:""" | |
| def format_sources(web_results): | |
| if not web_results: | |
| return "<div class='no-sources'>No sources available</div>" | |
| sources_html = "<div class='sources-container'>" | |
| for i, res in enumerate(web_results, 1): | |
| title = res["title"] or "Source" | |
| date = f"<span class='source-date'>{res['date']}</span>" if res['date'] else "" | |
| sources_html += f""" | |
| <div class='source-item'> | |
| <div class='source-number'>[{i}]</div> | |
| <div class='source-content'> | |
| <a href="{res['url']}" target="_blank" class='source-title'>{title}</a> | |
| {date} | |
| <div class='source-snippet'>{res['snippet'][:150]}...</div> | |
| </div> | |
| </div> | |
| """ | |
| sources_html += "</div>" | |
| return sources_html | |
| # ----------------------- Answer Generation ----------------------- # | |
| def generate_answer(prompt): | |
| model = init_models() | |
| inputs = tokenizer( | |
| prompt, | |
| return_tensors="pt", | |
| padding=True, | |
| truncation=True, | |
| max_length=512, | |
| return_attention_mask=True | |
| ).to(model.device) | |
| outputs = model.generate( | |
| inputs.input_ids, | |
| attention_mask=inputs.attention_mask, | |
| max_new_tokens=256, | |
| temperature=0.7, | |
| top_p=0.95, | |
| pad_token_id=tokenizer.eos_token_id, | |
| do_sample=True, | |
| early_stopping=True | |
| ) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| def generate_speech_with_gpu(text, voice_name='af'): | |
| try: | |
| device = 'cuda' | |
| TTS_MODEL = build_model('Kokoro-82M/kokoro-v0_19.pth', device) | |
| VOICEPACK = torch.load(f'Kokoro-82M/voices/{voice_name}.pt', weights_only=True).to(device) | |
| clean_text = ' '.join([line for line in text.split('\n') if not line.startswith('#')]) | |
| clean_text = clean_text.replace('[', '').replace(']', '').replace('*', '') | |
| max_chars = 1000 | |
| if len(clean_text) > max_chars: | |
| sentences = clean_text.split('.') | |
| chunks = [] | |
| current_chunk = "" | |
| for sentence in sentences: | |
| if len(current_chunk) + len(sentence) < max_chars: | |
| current_chunk += sentence + "." | |
| else: | |
| if current_chunk: | |
| chunks.append(current_chunk) | |
| current_chunk = sentence + "." | |
| if current_chunk: | |
| chunks.append(current_chunk) | |
| else: | |
| chunks = [clean_text] | |
| audio_chunks = [] | |
| for chunk in chunks: | |
| if chunk.strip(): | |
| chunk_audio, _ = generate(TTS_MODEL, chunk.strip(), VOICEPACK, lang='a') | |
| if isinstance(chunk_audio, torch.Tensor): | |
| chunk_audio = chunk_audio.cpu().numpy() | |
| audio_chunks.append(chunk_audio) | |
| if audio_chunks: | |
| final_audio = np.concatenate(audio_chunks) if len(audio_chunks) > 1 else audio_chunks[0] | |
| return (24000, final_audio) | |
| return None | |
| except Exception as e: | |
| print(f"Error generating speech: {str(e)}") | |
| import traceback | |
| traceback.print_exc() | |
| return None | |
| def process_query(query, history, selected_voice='af'): | |
| try: | |
| if history is None: | |
| history = [] | |
| web_results = get_web_results(query) | |
| sources_html = format_sources(web_results) | |
| current_history = history + [[query, "*Searching...*"]] | |
| yield { | |
| answer_output: gr.Markdown("*Searching & Thinking...*"), | |
| sources_output: gr.HTML(sources_html), | |
| search_btn: gr.Button("Searching...", interactive=False), | |
| chat_history_display: current_history, | |
| audio_output: None | |
| } | |
| prompt_text = format_prompt(query, web_results) | |
| answer = generate_answer(prompt_text) | |
| final_answer = answer.split("Answer:")[-1].strip() | |
| if TTS_ENABLED: | |
| try: | |
| yield { | |
| answer_output: gr.Markdown(final_answer), | |
| sources_output: gr.HTML(sources_html), | |
| search_btn: gr.Button("Generating audio...", interactive=False), | |
| chat_history_display: history + [[query, final_answer]], | |
| audio_output: None | |
| } | |
| audio = generate_speech_with_gpu(final_answer, selected_voice) | |
| except Exception as e: | |
| print(f"Error in speech generation: {str(e)}") | |
| audio = None | |
| else: | |
| audio = None | |
| updated_history = history + [[query, final_answer]] | |
| yield { | |
| answer_output: gr.Markdown(final_answer), | |
| sources_output: gr.HTML(sources_html), | |
| search_btn: gr.Button("Search", interactive=True), | |
| chat_history_display: updated_history, | |
| audio_output: audio if audio is not None else gr.Audio(value=None) | |
| } | |
| except Exception as e: | |
| error_message = str(e) | |
| if "GPU quota" in error_message: | |
| error_message = "โ ๏ธ GPU quota exceeded. Please try again later when the daily quota resets." | |
| yield { | |
| answer_output: gr.Markdown(f"Error: {error_message}"), | |
| sources_output: gr.HTML(sources_html), | |
| search_btn: gr.Button("Search", interactive=True), | |
| chat_history_display: history + [[query, f"*Error: {error_message}*"]], | |
| audio_output: None | |
| } | |
| # ----------------------- Custom CSS for Improved UI ----------------------- # | |
| css = """ | |
| .gradio-container { | |
| max-width: 1200px !important; | |
| background-color: #1e1e1e !important; | |
| padding: 20px; | |
| border-radius: 12px; | |
| } | |
| #header { | |
| text-align: center; | |
| padding: 2rem 0; | |
| background: #272727; | |
| border-radius: 12px; | |
| color: #ffffff; | |
| margin-bottom: 2rem; | |
| } | |
| #header h1 { | |
| font-size: 2.5rem; | |
| margin-bottom: 0.5rem; | |
| } | |
| .search-container { | |
| background: #272727; | |
| border-radius: 12px; | |
| padding: 1.5rem; | |
| margin-bottom: 1rem; | |
| } | |
| .search-box { | |
| padding: 1rem; | |
| background: #333333; | |
| border-radius: 8px; | |
| margin-bottom: 1rem; | |
| } | |
| .search-box input[type="text"] { | |
| background: #444444 !important; | |
| border: 1px solid #555555 !important; | |
| color: #ffffff !important; | |
| border-radius: 8px !important; | |
| } | |
| .search-box input[type="text"]::placeholder { | |
| color: #bbbbbb !important; | |
| } | |
| .search-box button { | |
| background: #2563eb !important; | |
| border: none !important; | |
| } | |
| .results-container { | |
| background: #2c2c2c; | |
| border-radius: 8px; | |
| padding: 1.5rem; | |
| margin-top: 1rem; | |
| } | |
| .answer-box { | |
| background: #3a3a3a; | |
| border-radius: 8px; | |
| padding: 1.5rem; | |
| color: #ffffff; | |
| margin-bottom: 1rem; | |
| } | |
| .answer-box p { | |
| color: #e0e0e0; | |
| line-height: 1.6; | |
| } | |
| .sources-container { | |
| margin-top: 1rem; | |
| background: #2c2c2c; | |
| border-radius: 8px; | |
| padding: 1rem; | |
| } | |
| .source-item { | |
| display: flex; | |
| padding: 12px; | |
| margin: 8px 0; | |
| background: #3a3a3a; | |
| border-radius: 8px; | |
| transition: all 0.2s; | |
| } | |
| .source-item:hover { | |
| background: #4a4a4a; | |
| } | |
| .source-number { | |
| font-weight: bold; | |
| margin-right: 12px; | |
| color: #60a5fa; | |
| } | |
| .source-content { | |
| flex: 1; | |
| } | |
| .source-title { | |
| color: #60a5fa; | |
| font-weight: 500; | |
| text-decoration: none; | |
| display: block; | |
| margin-bottom: 4px; | |
| } | |
| .source-date { | |
| color: #bbbbbb; | |
| font-size: 0.9em; | |
| margin-left: 8px; | |
| } | |
| .source-snippet { | |
| color: #e0e0e0; | |
| font-size: 0.9em; | |
| line-height: 1.4; | |
| } | |
| .chat-history { | |
| max-height: 400px; | |
| overflow-y: auto; | |
| padding: 1rem; | |
| background: #2c2c2c; | |
| border-radius: 8px; | |
| margin-top: 1rem; | |
| } | |
| .voice-selector { | |
| margin-top: 1rem; | |
| background: #333333; | |
| border-radius: 8px; | |
| padding: 0.5rem; | |
| } | |
| .voice-selector select { | |
| background: #444444 !important; | |
| color: #ffffff !important; | |
| border: 1px solid #555555 !important; | |
| } | |
| footer { | |
| text-align: center; | |
| padding: 1rem 0; | |
| font-size: 0.9em; | |
| color: #bbbbbb; | |
| } | |
| """ | |
| # ----------------------- Gradio Interface ----------------------- # | |
| with gr.Blocks(title="AI Search Assistant", css=css) as demo: | |
| chat_history = gr.State([]) | |
| with gr.Column(id="header"): | |
| gr.Markdown("# ๐ AI Search Assistant") | |
| gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice") | |
| with gr.Column(elem_classes="search-container"): | |
| with gr.Row(elem_classes="search-box"): | |
| search_input = gr.Textbox( | |
| label="", | |
| placeholder="Ask anything...", | |
| scale=5, | |
| container=False | |
| ) | |
| search_btn = gr.Button("Search", variant="primary", scale=1) | |
| voice_select = gr.Dropdown( | |
| choices=list(VOICE_CHOICES.items()), | |
| value='af', | |
| label="Select Voice", | |
| elem_classes="voice-selector" | |
| ) | |
| with gr.Row(elem_classes="results-container"): | |
| with gr.Column(scale=2): | |
| with gr.Column(elem_classes="answer-box"): | |
| answer_output = gr.Markdown() | |
| audio_output = gr.Audio(label="Voice Response") | |
| with gr.Accordion("Chat History", open=False): | |
| chat_history_display = gr.Chatbot(elem_classes="chat-history") | |
| with gr.Column(scale=1): | |
| with gr.Column(): | |
| gr.Markdown("### Sources") | |
| sources_output = gr.HTML() | |
| with gr.Row(): | |
| gr.Examples( | |
| examples=[ | |
| "musk explores blockchain for doge", | |
| "nvidia to launch new gaming card", | |
| "What are the best practices for sustainable living?", | |
| "How is climate change affecting ocean ecosystems?" | |
| ], | |
| inputs=search_input, | |
| label="Try these examples" | |
| ) | |
| search_btn.click( | |
| fn=process_query, | |
| inputs=[search_input, chat_history, voice_select], | |
| outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output] | |
| ) | |
| search_input.submit( | |
| fn=process_query, | |
| inputs=[search_input, chat_history, voice_select], | |
| outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) | |