import spaces import argparse import os import time from os import path from safetensors.torch import load_file from huggingface_hub import hf_hub_download import gradio as gr import torch from diffusers import FluxPipeline # Setup and initialization code cache_path = path.join(path.dirname(path.abspath(__file__)), "models") os.environ["TRANSFORMERS_CACHE"] = cache_path os.environ["HF_HUB_CACHE"] = cache_path os.environ["HF_HOME"] = cache_path torch.backends.cuda.matmul.allow_tf32 = True class timer: def __init__(self, method_name="timed process"): self.method = method_name def __enter__(self): self.start = time.time() print(f"{self.method} starts") def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() print(f"{self.method} took {str(round(end - self.start, 2))}s") # Model initialization if not path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) pipe.fuse_lora(lora_scale=0.125) pipe.to(device="cuda", dtype=torch.bfloat16) # Custom CSS css = """ footer {display: none !important} .gradio-container {max-width: 1200px; margin: auto;} .contain {background: rgba(255, 255, 255, 0.05); border-radius: 12px; padding: 20px;} .generate-btn { background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; border: none !important; color: white !important; } .generate-btn:hover { transform: translateY(-2px); box-shadow: 0 5px 15px rgba(0,0,0,0.2); } .title { text-align: center; font-size: 2.5em; font-weight: bold; margin-bottom: 1em; background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } """ # Create Gradio interface with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: gr.HTML('
Flux 8Step LoRA: Image Generator
') gr.HTML('
Create stunning images from your descriptions
') with gr.Row(): with gr.Column(scale=3): prompt = gr.Textbox( label="Image Description", placeholder="Describe the image you want to create...", lines=3 ) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): height = gr.Slider( label="Height", minimum=256, maximum=1152, step=64, value=1024 ) width = gr.Slider( label="Width", minimum=256, maximum=1152, step=64, value=1024 ) with gr.Row(): steps = gr.Slider( label="Inference Steps", minimum=6, maximum=25, step=1, value=8 ) scales = gr.Slider( label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5 ) seed = gr.Number( label="Seed (for reproducibility)", value=3413, precision=0 ) generate_btn = gr.Button( "✨ Generate Image", elem_classes=["generate-btn"] ) gr.HTML("""

Example Prompts:

🌅 Cinematic Landscape

"A breathtaking mountain vista at golden hour, dramatic sunbeams piercing through clouds, snow-capped peaks reflecting warm light, ultra-high detail photography, artistically composed, award-winning landscape photo, shot on Hasselblad"

🖼️ Fantasy Portrait

"Ethereal portrait of an elven queen with flowing silver hair, adorned with luminescent crystals, intricate crown of twisted gold and moonstone, soft ethereal lighting, detailed facial features, fantasy art style, highly detailed, painted by Artgerm and Charlie Bowater"

🌃 Cyberpunk Scene

"Neon-lit cyberpunk street market in rain, holographic advertisements reflecting in puddles, street vendors with glowing cyber-augmentations, dense urban environment, atmospheric fog, cinematic lighting, inspired by Blade Runner 2049"

🎨 Abstract Art

"Vibrant abstract composition of flowing liquid colors, dynamic swirls of iridescent purples and teals, golden geometric patterns emerging from chaos, luxury art style, ultra-detailed, painted in oil on canvas, inspired by James Jean and Gustav Klimt"

🌿 Macro Nature

"Extreme macro photography of a dewdrop on a butterfly wing, rainbow light refraction, crystalline clarity, intricate wing scales visible, natural bokeh background, professional studio lighting, shot with Canon MP-E 65mm lens"

Tips for best results:

""") with gr.Column(scale=4): output = gr.Image(label="Generated Image") @spaces.GPU def process_image(height, width, steps, scales, prompt, seed): global pipe with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): return pipe( prompt=[prompt], generator=torch.Generator().manual_seed(int(seed)), num_inference_steps=int(steps), guidance_scale=float(scales), height=int(height), width=int(width), max_sequence_length=256 ).images[0] generate_btn.click( process_image, inputs=[height, width, steps, scales, prompt, seed], outputs=output ) if __name__ == "__main__": demo.launch()