import spaces import argparse import os import time from os import path import shutil from datetime import datetime from safetensors.torch import load_file from huggingface_hub import hf_hub_download import gradio as gr import torch from diffusers import FluxPipeline from PIL import Image from transformers import pipeline translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") # Hugging Face 토큰 설정 HF_TOKEN = os.getenv("HF_TOKEN") if HF_TOKEN is None: raise ValueError("HF_TOKEN environment variable is not set") # Setup and initialization code cache_path = path.join(path.dirname(path.abspath(__file__)), "models") PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".") gallery_path = path.join(PERSISTENT_DIR, "gallery") os.environ["TRANSFORMERS_CACHE"] = cache_path os.environ["HF_HUB_CACHE"] = cache_path os.environ["HF_HOME"] = cache_path torch.backends.cuda.matmul.allow_tf32 = True # Create gallery directory if it doesn't exist if not path.exists(gallery_path): os.makedirs(gallery_path, exist_ok=True) # 샘플 이미지와 프롬프트 정의 SAMPLE_IMAGES = { "3d1.webp": "the most famous hero according to Zhou Qi" } class timer: def __init__(self, method_name="timed process"): self.method = method_name def __enter__(self): self.start = time.time() print(f"{self.method} starts") def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() print(f"{self.method} took {str(round(end - self.start, 2))}s") # Model initialization if not path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) # 인증된 모델 로드 pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, use_auth_token=HF_TOKEN ) # Hyper-SD LoRA 로드 pipe.load_lora_weights( hf_hub_download( "ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors", use_auth_token=HF_TOKEN ) ) pipe.fuse_lora(lora_scale=0.125) pipe.to(device="cuda", dtype=torch.bfloat16) def save_image(image): """Save the generated image and return the path""" try: if not os.path.exists(gallery_path): try: os.makedirs(gallery_path, exist_ok=True) except Exception as e: print(f"Failed to create gallery directory: {str(e)}") return None timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") random_suffix = os.urandom(4).hex() filename = f"generated_{timestamp}_{random_suffix}.png" filepath = os.path.join(gallery_path, filename) try: if isinstance(image, Image.Image): image.save(filepath, "PNG", quality=100) else: image = Image.fromarray(image) image.save(filepath, "PNG", quality=100) return filepath except Exception as e: print(f"Failed to save image: {str(e)}") return None except Exception as e: print(f"Error in save_image: {str(e)}") return None # 예시 프롬프트 정의 부분을 수정 example_prompts = [ "A 3D Star Wars Darth Vader helmet, highly detailed metallic finish", "A 3D Iron Man mask with glowing eyes and metallic red-gold finish", "A 3D Pokemon Pikachu figure with glossy surface", "A 3D geometric abstract cube transforming into a sphere, metallic finish", "A 3D steampunk mechanical heart with brass and copper details", "A 3D crystal dragon with transparent iridescent scales", "A 3D futuristic hovering drone with neon light accents", "A 3D ancient Greek warrior helmet with ornate details", "A 3D robotic butterfly with mechanical wings and metallic finish", "A 3D floating magical crystal orb with internal energy swirls" ] @spaces.GPU def process_and_save_image(height=1024, width=1024, steps=8, scales=3.5, prompt="", seed=None): global pipe if seed is None: seed = torch.randint(0, 1000000, (1,)).item() # 한글 감지 및 번역 def contains_korean(text): return any(ord('가') <= ord(c) <= ord('힣') for c in text) # 프롬프트 전처리 if contains_korean(prompt): translated = translator(prompt)[0]['translation_text'] prompt = translated formatted_prompt = f"wbgmsst, 3D, {prompt} ,white background" with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): try: generated_image = pipe( prompt=[formatted_prompt], generator=torch.Generator().manual_seed(int(seed)), num_inference_steps=int(steps), guidance_scale=float(scales), height=int(height), width=int(width), max_sequence_length=256 ).images[0] saved_path = save_image(generated_image) if saved_path is None: print("Warning: Failed to save generated image") return generated_image except Exception as e: print(f"Error in image generation: {str(e)}") return None def get_random_seed(): return torch.randint(0, 1000000, (1,)).item() def process_example(prompt): return process_and_save_image( height=1024, width=1024, steps=8, scales=3.5, prompt=prompt, seed=get_random_seed() ) # example_prompts 변수와 process_example 함수 제거 # Gradio 인터페이스 with gr.Blocks( theme=gr.themes.Soft(), css=""" .container { background: linear-gradient(to bottom right, #1a1a1a, #4a4a4a); border-radius: 20px; padding: 20px; } .generate-btn { background: linear-gradient(45deg, #2196F3, #00BCD4); border: none; color: white; font-weight: bold; border-radius: 10px; } .output-image { border-radius: 15px; box-shadow: 0 8px 16px rgba(0,0,0,0.2); } .fixed-width { max-width: 1024px; margin: auto; } .gallery-container { margin-top: 40px; padding: 20px; background: #f5f5f5; border-radius: 15px; } .gallery-title { text-align: center; margin-bottom: 20px; color: #333; font-size: 1.5rem; } """ ) as demo: gr.HTML( """
Create amazing 3D-style images with AI
Prompt: {prompt}