ginipick commited on
Commit
e2de50d
ยท
verified ยท
1 Parent(s): 8567019

Create app-backup.py

Browse files
Files changed (1) hide show
  1. app-backup.py +327 -0
app-backup.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import argparse
3
+ import os
4
+ import time
5
+ from os import path
6
+ import shutil
7
+ from datetime import datetime
8
+ from safetensors.torch import load_file
9
+ from huggingface_hub import hf_hub_download
10
+ import gradio as gr
11
+ import torch
12
+ from diffusers import FluxPipeline
13
+ from PIL import Image
14
+ from transformers import pipeline
15
+
16
+ translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
17
+
18
+ # Hugging Face ํ† ํฐ ์„ค์ •
19
+ HF_TOKEN = os.getenv("HF_TOKEN")
20
+ if HF_TOKEN is None:
21
+ raise ValueError("HF_TOKEN environment variable is not set")
22
+
23
+ # Setup and initialization code
24
+ cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
25
+ PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
26
+ gallery_path = path.join(PERSISTENT_DIR, "gallery")
27
+
28
+ os.environ["TRANSFORMERS_CACHE"] = cache_path
29
+ os.environ["HF_HUB_CACHE"] = cache_path
30
+ os.environ["HF_HOME"] = cache_path
31
+
32
+ torch.backends.cuda.matmul.allow_tf32 = True
33
+
34
+ # Create gallery directory if it doesn't exist
35
+ if not path.exists(gallery_path):
36
+ os.makedirs(gallery_path, exist_ok=True)
37
+
38
+ class timer:
39
+ def __init__(self, method_name="timed process"):
40
+ self.method = method_name
41
+ def __enter__(self):
42
+ self.start = time.time()
43
+ print(f"{self.method} starts")
44
+ def __exit__(self, exc_type, exc_val, exc_tb):
45
+ end = time.time()
46
+ print(f"{self.method} took {str(round(end - self.start, 2))}s")
47
+
48
+ # Model initialization
49
+ if not path.exists(cache_path):
50
+ os.makedirs(cache_path, exist_ok=True)
51
+
52
+ # ์ธ์ฆ๋œ ๋ชจ๋ธ ๋กœ๋“œ
53
+ pipe = FluxPipeline.from_pretrained(
54
+ "black-forest-labs/FLUX.1-dev",
55
+ torch_dtype=torch.bfloat16,
56
+ use_auth_token=HF_TOKEN
57
+ )
58
+
59
+ # Hyper-SD LoRA ๋กœ๋“œ (์ธ์ฆ ํฌํ•จ)
60
+ pipe.load_lora_weights(
61
+ hf_hub_download(
62
+ "ByteDance/Hyper-SD",
63
+ "Hyper-FLUX.1-dev-8steps-lora.safetensors",
64
+ use_auth_token=HF_TOKEN
65
+ )
66
+ )
67
+ pipe.fuse_lora(lora_scale=0.125)
68
+ pipe.to(device="cuda", dtype=torch.bfloat16)
69
+
70
+ def save_image(image):
71
+ """Save the generated image and return the path"""
72
+ try:
73
+ if not os.path.exists(gallery_path):
74
+ try:
75
+ os.makedirs(gallery_path, exist_ok=True)
76
+ except Exception as e:
77
+ print(f"Failed to create gallery directory: {str(e)}")
78
+ return None
79
+
80
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
81
+ random_suffix = os.urandom(4).hex()
82
+ filename = f"generated_{timestamp}_{random_suffix}.png"
83
+ filepath = os.path.join(gallery_path, filename)
84
+
85
+ try:
86
+ if isinstance(image, Image.Image):
87
+ image.save(filepath, "PNG", quality=100)
88
+ else:
89
+ image = Image.fromarray(image)
90
+ image.save(filepath, "PNG", quality=100)
91
+
92
+ if not os.path.exists(filepath):
93
+ print(f"Warning: Failed to verify saved image at {filepath}")
94
+ return None
95
+
96
+ return filepath
97
+ except Exception as e:
98
+ print(f"Failed to save image: {str(e)}")
99
+ return None
100
+
101
+ except Exception as e:
102
+ print(f"Error in save_image: {str(e)}")
103
+ return None
104
+
105
+
106
+ # ์˜ˆ์‹œ ํ”„๋กฌํ”„ํŠธ ์ •์˜
107
+ examples = [
108
+ ["A 3D Star Wars Darth Vader helmet, highly detailed metallic finish"],
109
+ ["A 3D Iron Man mask with glowing eyes and metallic red-gold finish"],
110
+ ["A detailed 3D Pokemon Pikachu figure with glossy surface"],
111
+ ["A 3D geometric abstract cube transforming into a sphere, metallic finish"],
112
+ ["A 3D steampunk mechanical heart with brass and copper details"],
113
+ ["A 3D crystal dragon with transparent iridescent scales"],
114
+ ["A 3D futuristic hovering drone with neon light accents"],
115
+ ["A 3D ancient Greek warrior helmet with ornate details"],
116
+ ["A 3D robotic butterfly with mechanical wings and metallic finish"],
117
+ ["A 3D floating magical crystal orb with internal energy swirls"]
118
+ ]
119
+
120
+ # Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ˆ˜์ •
121
+ with gr.Blocks(
122
+ theme=gr.themes.Soft(),
123
+ css="""
124
+ .container {
125
+ background: linear-gradient(to bottom right, #1a1a1a, #4a4a4a);
126
+ border-radius: 20px;
127
+ padding: 20px;
128
+ }
129
+ .generate-btn {
130
+ background: linear-gradient(45deg, #2196F3, #00BCD4);
131
+ border: none;
132
+ color: white;
133
+ font-weight: bold;
134
+ border-radius: 10px;
135
+ }
136
+ .output-image {
137
+ border-radius: 15px;
138
+ box-shadow: 0 8px 16px rgba(0,0,0,0.2);
139
+ }
140
+ .fixed-width {
141
+ max-width: 1024px;
142
+ margin: auto;
143
+ }
144
+ """
145
+ ) as demo:
146
+ gr.HTML(
147
+ """
148
+ <div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
149
+ <h1 style="font-size: 2.5rem; color: #2196F3;">3D Style Image Generator</h1>
150
+ <p style="font-size: 1.2rem; color: #666;">Create amazing 3D-style images with AI</p>
151
+ </div>
152
+ """
153
+ )
154
+
155
+ with gr.Row(elem_classes="container"):
156
+ with gr.Column(scale=3):
157
+ prompt = gr.Textbox(
158
+ label="Image Description",
159
+ placeholder="Describe the 3D image you want to create...",
160
+ lines=3
161
+ )
162
+
163
+ # ... (๊ธฐ์กด Advanced Settings ์ฝ”๋“œ)
164
+
165
+ with gr.Column(scale=4, elem_classes=["fixed-width"]):
166
+ # ๊ธฐ๋ณธ ์ด๋ฏธ์ง€ ์„ค์ •
167
+ output = gr.Image(
168
+ label="Generated Image",
169
+ elem_id="output-image",
170
+ elem_classes=["output-image", "fixed-width"],
171
+ value="3d.webp" # ๊ธฐ๋ณธ ์ด๋ฏธ์ง€ ์„ค์ •
172
+ )
173
+
174
+ # Examples ์„น์…˜ ์ถ”๊ฐ€
175
+ gr.Examples(
176
+ examples=examples,
177
+ inputs=prompt,
178
+ outputs=output,
179
+ fn=process_and_save_image,
180
+ cache_examples=True, # ์˜ˆ์‹œ ๊ฒฐ๊ณผ ์บ์‹ฑ ํ™œ์„ฑํ™”
181
+ examples_per_page=5
182
+ )
183
+
184
+
185
+
186
+ if __name__ == "__main__":
187
+ demo.launch(
188
+ allowed_paths=[PERSISTENT_DIR],
189
+ share=True
190
+ )
191
+
192
+
193
+
194
+
195
+
196
+
197
+
198
+
199
+
200
+
201
+
202
+
203
+
204
+ # Create Gradio interface
205
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
206
+ with gr.Row():
207
+ with gr.Column(scale=3):
208
+ prompt = gr.Textbox(
209
+ label="Image Description",
210
+ placeholder="Describe the image you want to create...",
211
+ lines=3
212
+ )
213
+
214
+ with gr.Accordion("Advanced Settings", open=False):
215
+ with gr.Row():
216
+ height = gr.Slider(
217
+ label="Height",
218
+ minimum=256,
219
+ maximum=1152,
220
+ step=64,
221
+ value=1024
222
+ )
223
+ width = gr.Slider(
224
+ label="Width",
225
+ minimum=256,
226
+ maximum=1152,
227
+ step=64,
228
+ value=1024
229
+ )
230
+
231
+ with gr.Row():
232
+ steps = gr.Slider(
233
+ label="Inference Steps",
234
+ minimum=6,
235
+ maximum=25,
236
+ step=1,
237
+ value=8
238
+ )
239
+ scales = gr.Slider(
240
+ label="Guidance Scale",
241
+ minimum=0.0,
242
+ maximum=5.0,
243
+ step=0.1,
244
+ value=3.5
245
+ )
246
+
247
+ def get_random_seed():
248
+ return torch.randint(0, 1000000, (1,)).item()
249
+
250
+ seed = gr.Number(
251
+ label="Seed (random by default, set for reproducibility)",
252
+ value=get_random_seed(),
253
+ precision=0
254
+ )
255
+
256
+ randomize_seed = gr.Button("๐ŸŽฒ Randomize Seed", elem_classes=["generate-btn"])
257
+
258
+ generate_btn = gr.Button(
259
+ "โœจ Generate Image",
260
+ elem_classes=["generate-btn"]
261
+ )
262
+
263
+ with gr.Column(scale=4, elem_classes=["fixed-width"]):
264
+ output = gr.Image(
265
+ label="Generated Image",
266
+ elem_id="output-image",
267
+ elem_classes=["output-image", "fixed-width"]
268
+ )
269
+
270
+ @spaces.GPU
271
+ def process_and_save_image(height, width, steps, scales, prompt, seed):
272
+ global pipe
273
+
274
+ # ํ•œ๊ธ€ ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ
275
+ def contains_korean(text):
276
+ return any(ord('๊ฐ€') <= ord(c) <= ord('ํžฃ') for c in text)
277
+
278
+ # ํ”„๋กฌํ”„ํŠธ ์ „์ฒ˜๋ฆฌ
279
+ if contains_korean(prompt):
280
+ # ํ•œ๊ธ€์„ ์˜์–ด๋กœ ๋ฒˆ์—ญ
281
+ translated = translator(prompt)[0]['translation_text']
282
+ prompt = translated
283
+
284
+ # ํ”„๋กฌํ”„ํŠธ ํ˜•์‹ ๊ฐ•์ œ
285
+ formatted_prompt = f"wbgmsst, 3D, {prompt} ,white background"
286
+
287
+ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
288
+ try:
289
+ generated_image = pipe(
290
+ prompt=[formatted_prompt],
291
+ generator=torch.Generator().manual_seed(int(seed)),
292
+ num_inference_steps=int(steps),
293
+ guidance_scale=float(scales),
294
+ height=int(height),
295
+ width=int(width),
296
+ max_sequence_length=256
297
+ ).images[0]
298
+
299
+ saved_path = save_image(generated_image)
300
+ if saved_path is None:
301
+ print("Warning: Failed to save generated image")
302
+
303
+ return generated_image
304
+ except Exception as e:
305
+ print(f"Error in image generation: {str(e)}")
306
+ return None
307
+
308
+ def update_seed():
309
+ return get_random_seed()
310
+
311
+ # Click event handlers inside gr.Blocks context
312
+ generate_btn.click(
313
+ process_and_save_image,
314
+ inputs=[height, width, steps, scales, prompt, seed],
315
+ outputs=output
316
+ ).then(
317
+ update_seed,
318
+ outputs=[seed]
319
+ )
320
+
321
+ randomize_seed.click(
322
+ update_seed,
323
+ outputs=[seed]
324
+ )
325
+
326
+ if __name__ == "__main__":
327
+ demo.launch(allowed_paths=[PERSISTENT_DIR])