import tempfile import time from collections.abc import Sequence from typing import Any, cast import os from huggingface_hub import login, hf_hub_download import gradio as gr import numpy as np import pillow_heif import spaces import torch from gradio_image_annotation import image_annotator from gradio_imageslider import ImageSlider from PIL import Image from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml from refiners.fluxion.utils import no_grad from refiners.solutions import BoxSegmenter from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor from diffusers import FluxPipeline from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM import gc import base64 # GPU 설정 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 명시적으로 cuda:0 지정 ###--------------ZERO GPU 필수/ 메모리 관리 공통 --------------------### def clear_memory(): """메모리 정리 함수""" gc.collect() if torch.cuda.is_available(): try: with torch.cuda.device('cuda:0'): torch.cuda.empty_cache() torch.cuda.synchronize() except Exception as e: print(f"Warning: Could not clear CUDA memory: {e}") ###--------------------------------------------------------------- # GPU 설정을 try-except로 감싸기 if torch.cuda.is_available(): try: with torch.cuda.device(0): torch.cuda.empty_cache() torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True except: print("Warning: Could not configure CUDA settings") # 번역 모델 초기화 model_name = "Helsinki-NLP/opus-mt-ko-en" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to('cpu') translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1) def translate_to_english(text: str) -> str: """한글 텍스트를 영어로 번역""" try: if any(ord('가') <= ord(char) <= ord('힣') for char in text): translated = translator(text, max_length=128)[0]['translation_text'] print(f"Translated '{text}' to '{translated}'") return translated return text except Exception as e: print(f"Translation error: {str(e)}") return text BoundingBox = tuple[int, int, int, int] pillow_heif.register_heif_opener() pillow_heif.register_avif_opener() # HF 토큰 설정 HF_TOKEN = os.getenv("HF_TOKEN") if HF_TOKEN is None: raise ValueError("Please set the HF_TOKEN environment variable") try: login(token=HF_TOKEN) except Exception as e: raise ValueError(f"Failed to login to Hugging Face: {str(e)}") # 모델 초기화 segmenter = BoxSegmenter(device="cpu") segmenter.device = device segmenter.model = segmenter.model.to(device=segmenter.device) gd_model_path = "IDEA-Research/grounding-dino-base" gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path) gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32) gd_model = gd_model.to(device=device) assert isinstance(gd_model, GroundingDinoForObjectDetection) # 파이프라인 초기화 및 최적화 설정 pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16, use_auth_token=HF_TOKEN ) # 메모리 최적화 설정 - FluxPipeline에서 지원하는 메서드만 사용 pipe.enable_attention_slicing(slice_size="auto") # xformers 최적화 (설치되어 있는 경우에만) try: import xformers pipe.enable_xformers_memory_efficient_attention() except ImportError: print("xformers is not installed. Skipping memory efficient attention.") # GPU 설정 if torch.cuda.is_available(): try: pipe = pipe.to("cuda:0") # CPU 오프로딩이 지원되는 경우에만 활성화 if hasattr(pipe, 'enable_model_cpu_offload'): pipe.enable_model_cpu_offload() except Exception as e: print(f"Warning: Could not move pipeline to CUDA: {str(e)}") # LoRA 가중치 로드 pipe.load_lora_weights( hf_hub_download( "ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors", use_auth_token=HF_TOKEN ) ) pipe.fuse_lora(lora_scale=0.125) # GPU 설정을 try-except로 감싸기 try: if torch.cuda.is_available(): pipe = pipe.to("cuda:0") # 명시적으로 cuda:0 지정 except Exception as e: print(f"Warning: Could not move pipeline to CUDA: {str(e)}") class timer: def __init__(self, method_name="timed process"): self.method = method_name def __enter__(self): self.start = time.time() print(f"{self.method} starts") def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() print(f"{self.method} took {str(round(end - self.start, 2))}s") def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None: if not bboxes: return None for bbox in bboxes: assert len(bbox) == 4 assert all(isinstance(x, int) for x in bbox) return ( min(bbox[0] for bbox in bboxes), min(bbox[1] for bbox in bboxes), max(bbox[2] for bbox in bboxes), max(bbox[3] for bbox in bboxes), ) def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor: x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1) return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1) def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None: inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device) with no_grad(): outputs = gd_model(**inputs) width, height = img.size results: dict[str, Any] = gd_processor.post_process_grounded_object_detection( outputs, inputs["input_ids"], target_sizes=[(height, width)], )[0] assert "boxes" in results and isinstance(results["boxes"], torch.Tensor) bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height) return bbox_union(bboxes.numpy().tolist()) def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image: assert img.size == mask_img.size img = img.convert("RGB") mask_img = mask_img.convert("L") if defringe: rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0 foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha)) img = Image.fromarray((foreground * 255).astype("uint8")) result = Image.new("RGBA", img.size) result.paste(img, (0, 0), mask_img) return result def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]: """선택된 비율에 따라 이미지 크기 계산""" # FLUX 파이프라인이 지원하는 안전한 크기 사용 if aspect_ratio == "1:1": width = height = 512 elif aspect_ratio == "16:9": width, height = 576, 320 # 16:9에 가까운 안전한 크기 elif aspect_ratio == "9:16": width, height = 320, 576 # 9:16에 가까운 안전한 크기 elif aspect_ratio == "4:3": width, height = 512, 384 # 4:3에 가까운 안전한 크기 else: width = height = 512 # 8의 배수로 조정 width = (width // 8) * 8 height = (height // 8) * 8 return width, height def generate_background(prompt: str, aspect_ratio: str) -> Image.Image: try: # 안전한 크기 계산 width, height = calculate_dimensions(aspect_ratio) print(f"Generating background with size: {width}x{height}") with timer("Background generation"): try: # 먼저 512x512로 생성 with torch.inference_mode(): image = pipe( prompt=prompt, width=512, height=512, num_inference_steps=8, guidance_scale=4.0, ).images[0] # 원하는 크기로 리사이즈 if width != 512 or height != 512: image = image.resize((width, height), Image.LANCZOS) return image except Exception as e: print(f"Pipeline error: {str(e)}") # 에러 발생 시 흰색 배경 반환 return Image.new('RGB', (width, height), 'white') except Exception as e: print(f"Background generation error: {str(e)}") return Image.new('RGB', (512, 512), 'white') def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]: """이미지 크기를 8의 배수로 조정""" new_width = max(8, ((width + 7) // 8) * 8) # 최소 8픽셀 보장 new_height = max(8, ((height + 7) // 8) * 8) # 최소 8픽셀 보장 return new_width, new_height def create_position_grid(): return """
""" def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]: """오브젝트의 위치 계산""" bg_width, bg_height = bg_size obj_width, obj_height = obj_size positions = { "top-left": (0, 0), "top-center": ((bg_width - obj_width) // 2, 0), "top-right": (bg_width - obj_width, 0), "middle-left": (0, (bg_height - obj_height) // 2), "middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2), "middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2), "bottom-left": (0, bg_height - obj_height), "bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height), "bottom-right": (bg_width - obj_width, bg_height - obj_height) } return positions.get(position, positions["bottom-center"]) def resize_object(image: Image.Image, scale_percent: float) -> Image.Image: """오브젝트 크기 조정""" width = int(image.width * scale_percent / 100) height = int(image.height * scale_percent / 100) return image.resize((width, height), Image.Resampling.LANCZOS) def combine_with_background(foreground: Image.Image, background: Image.Image, position: str = "bottom-center", scale_percent: float = 100) -> Image.Image: """전경과 배경 합성 함수""" # 배경 이미지 준비 result = background.convert('RGBA') # 오브젝트 크기 조정 scaled_foreground = resize_object(foreground, scale_percent) # 오브젝트 위치 계산 x, y = calculate_object_position(position, result.size, scaled_foreground.size) # 합성 result.paste(scaled_foreground, (x, y), scaled_foreground) return result @spaces.GPU(duration=20) # 30초에서 20초로 감소 def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]: try: with torch.inference_mode(), torch.amp.autocast('cuda', enabled=torch.cuda.is_available()): if isinstance(prompt, str): bbox = gd_detect(img, prompt) if not bbox: raise gr.Error("No object detected in image") else: bbox = prompt mask = segmenter(img, bbox) return mask, bbox, [] except Exception as e: print(f"GPU process error: {str(e)}") raise finally: clear_memory() def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]: try: # 입력 이미지 크기 제한 max_size = 1024 if img.width > max_size or img.height > max_size: ratio = max_size / max(img.width, img.height) new_size = (int(img.width * ratio), int(img.height * ratio)) img = img.resize(new_size, Image.LANCZOS) # CUDA 메모리 관리 if torch.cuda.is_available(): torch.cuda.empty_cache() # 새로운 autocast 구문 사용 with torch.amp.autocast('cuda', enabled=torch.cuda.is_available()): mask, bbox, time_log = _gpu_process(img, prompt) masked_alpha = apply_mask(img, mask, defringe=True) if bg_prompt: background = generate_background(bg_prompt, aspect_ratio) combined = background else: combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha) clear_memory() with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp: combined.save(temp.name) return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True) except Exception as e: clear_memory() print(f"Processing error: {str(e)}") raise gr.Error(f"Processing failed: {str(e)}") def on_change_bbox(prompts: dict[str, Any] | None): return gr.update(interactive=prompts is not None) def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None): return gr.update(interactive=bool(img and prompt)) def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None, aspect_ratio: str = "1:1", position: str = "bottom-center", scale_percent: float = 100) -> tuple[Image.Image, Image.Image]: try: if img is None or not prompt or prompt.isspace(): raise gr.Error("Please provide both image and prompt") print(f"Processing with position: {position}, scale: {scale_percent}") # 디버깅용 # 입력 이미지 크기 제한 max_size = 1024 if img.width > max_size or img.height > max_size: ratio = max_size / max(img.width, img.height) img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) # 번역 처리 translated_prompt = translate_to_english(prompt) translated_bg_prompt = translate_to_english(bg_prompt) if bg_prompt else None # 이미지 처리 with torch.inference_mode(): results, _ = _process(img, translated_prompt, translated_bg_prompt, aspect_ratio) if translated_bg_prompt: try: combined = combine_with_background( foreground=results[2], background=results[1], position=position, scale_percent=scale_percent # scale_slider가 아닌 scale_percent 사용 ) return combined, results[2] except Exception as e: print(f"Background combination error: {e}") return results[1], results[2] return results[1], results[2] except Exception as e: print(f"Process error: {str(e)}") raise gr.Error(str(e)) finally: clear_memory() def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]: try: if img is None or box_input.strip() == "": raise gr.Error("Please provide both image and bounding box coordinates") try: coords = eval(box_input) if not isinstance(coords, list) or len(coords) != 4: raise ValueError("Invalid box format") bbox = tuple(int(x) for x in coords) except: raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]") # Process the image results, _ = _process(img, bbox) # 합성된 이미지와 추출된 이미지만 반환 return results[1], results[2] except Exception as e: raise gr.Error(str(e)) # Event handler functions 수정 def update_process_button(img, prompt): return gr.update( interactive=bool(img and prompt), variant="primary" if bool(img and prompt) else "secondary" ) def update_box_button(img, box_input): try: if img and box_input: coords = eval(box_input) if isinstance(coords, list) and len(coords) == 4: return gr.update(interactive=True, variant="primary") return gr.update(interactive=False, variant="secondary") except: return gr.update(interactive=False, variant="secondary") # CSS 정의 css = """ footer {display: none} .main-title { text-align: center; margin: 2em 0; padding: 1em; background: #f7f7f7; border-radius: 10px; } .main-title h1 { color: #2196F3; font-size: 2.5em; margin-bottom: 0.5em; } .main-title p { color: #666; font-size: 1.2em; } .container { max-width: 1200px; margin: auto; padding: 20px; } .tabs { margin-top: 1em; } .input-group { background: white; padding: 1em; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); } .output-group { background: white; padding: 1em; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); } button.primary { background: #2196F3; border: none; color: white; padding: 0.5em 1em; border-radius: 4px; cursor: pointer; transition: background 0.3s ease; } button.primary:hover { background: #1976D2; } .position-btn { transition: all 0.3s ease; } .position-btn:hover { background-color: #e3f2fd; } .position-btn.selected { background-color: #2196F3; color: white; } """ def get_image_base64(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode() # 이미지를 Base64로 변환 try: example_img1 = get_image_base64("aa1.png") example_img2 = get_image_base64("aa2.png") example_img3 = get_image_base64("aa3.png") except Exception as e: print(f"Error loading example images: {e}") example_img1 = example_img2 = example_img3 = "" # HTML 템플릿 수정 example_html = f"""

How It Works: Step by Step Guide

Step 1: Original Image

Upload your original image containing the object you want to extract.

Step 2: Object Extraction

AI automatically detects and extracts the specified object.

Step 3: Final Result

The extracted object is placed on an AI-generated background.

Key Features:

""" # UI 구성 with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: gr.HTML("""

🎨GiniGen Canvas

AI Integrated Image Creator: Extract objects, generate backgrounds, and adjust ratios and positions to create complete images with AI.

""") # 예제 섹션 추가 gr.HTML(example_html) with gr.Row(): with gr.Column(scale=1): input_image = gr.Image( type="pil", label="Upload Image", interactive=True ) text_prompt = gr.Textbox( label="Object to Extract", placeholder="Enter what you want to extract...", interactive=True ) with gr.Row(): bg_prompt = gr.Textbox( label="Background Prompt (optional)", placeholder="Describe the background...", interactive=True, scale=3 ) aspect_ratio = gr.Dropdown( choices=["1:1", "16:9", "9:16", "4:3"], value="1:1", label="Aspect Ratio", interactive=True, visible=True, scale=1 ) with gr.Row(visible=False) as object_controls: with gr.Column(scale=1): with gr.Row(): position = gr.State(value="bottom-center") btn_top_left = gr.Button("↖") btn_top_center = gr.Button("↑") btn_top_right = gr.Button("↗") with gr.Row(): btn_middle_left = gr.Button("←") btn_middle_center = gr.Button("•") btn_middle_right = gr.Button("→") with gr.Row(): btn_bottom_left = gr.Button("↙") btn_bottom_center = gr.Button("↓") btn_bottom_right = gr.Button("↘") with gr.Column(scale=1): scale_slider = gr.Slider( minimum=10, maximum=200, value=100, step=5, label="Object Size (%)" ) process_btn = gr.Button( "Process", variant="primary", interactive=False ) # 각 버튼에 대한 클릭 이벤트 처리 def update_position(new_position): return new_position btn_top_left.click(fn=lambda: update_position("top-left"), outputs=position) btn_top_center.click(fn=lambda: update_position("top-center"), outputs=position) btn_top_right.click(fn=lambda: update_position("top-right"), outputs=position) btn_middle_left.click(fn=lambda: update_position("middle-left"), outputs=position) btn_middle_center.click(fn=lambda: update_position("middle-center"), outputs=position) btn_middle_right.click(fn=lambda: update_position("middle-right"), outputs=position) btn_bottom_left.click(fn=lambda: update_position("bottom-left"), outputs=position) btn_bottom_center.click(fn=lambda: update_position("bottom-center"), outputs=position) btn_bottom_right.click(fn=lambda: update_position("bottom-right"), outputs=position) with gr.Column(scale=1): with gr.Row(): combined_image = gr.Image( label="Combined Result", show_download_button=True, type="pil", height=512 ) with gr.Row(): extracted_image = gr.Image( label="Extracted Object", show_download_button=True, type="pil", height=256 ) # Event bindings input_image.change( fn=update_process_button, inputs=[input_image, text_prompt], outputs=process_btn, queue=False ) text_prompt.change( fn=update_process_button, inputs=[input_image, text_prompt], outputs=process_btn, queue=False ) def update_controls(bg_prompt): is_visible = bool(bg_prompt) return [ gr.update(visible=is_visible, interactive=is_visible), # aspect_ratio gr.update(visible=is_visible), # object_controls ] bg_prompt.change( fn=update_controls, inputs=bg_prompt, outputs=[aspect_ratio, object_controls], queue=False ) process_btn.click( fn=process_prompt, inputs=[ input_image, text_prompt, bg_prompt, aspect_ratio, position, scale_slider ], outputs=[combined_image, extracted_image], queue=True ) demo.queue(max_size=5) # 큐 크기 제한 demo.launch( server_name="0.0.0.0", server_port=7860, share=False, max_threads=2) # 스레드 수 제한