Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -32,6 +32,20 @@ def clear_memory():
|
|
32 |
torch.cuda.synchronize()
|
33 |
gc.collect()
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# ์๋ ํผํฉ ์ ๋ฐ๋(Automatic Mixed Precision) ์ค์
|
36 |
if torch.cuda.is_available():
|
37 |
scaler = torch.amp.GradScaler('cuda')
|
@@ -89,6 +103,7 @@ gd_model = gd_model.to(device=device)
|
|
89 |
assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
90 |
|
91 |
|
|
|
92 |
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
93 |
pipe = FluxPipeline.from_pretrained(
|
94 |
"black-forest-labs/FLUX.1-dev",
|
@@ -110,9 +125,9 @@ pipe.fuse_lora(lora_scale=0.125)
|
|
110 |
# GPU ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ
|
111 |
if torch.cuda.is_available():
|
112 |
pipe.to("cuda")
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
|
117 |
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # ๋จ์ผ GPU ์ฌ์ฉ
|
118 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512" # CUDA ๋ฉ๋ชจ๋ฆฌ ํ ๋น ์ค์
|
@@ -203,40 +218,26 @@ def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
|
|
203 |
height = int(height * ratio)
|
204 |
width, height = adjust_size_to_multiple_of_8(width, height)
|
205 |
|
|
|
|
|
206 |
with timer("Background generation"):
|
207 |
-
with torch.inference_mode():
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
return image
|
220 |
except Exception as e:
|
221 |
print(f"Background generation error: {str(e)}")
|
|
|
222 |
return Image.new('RGB', (512, 512), 'white')
|
223 |
|
224 |
-
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ ๋ถ๋ถ ์์
|
225 |
-
pipe = FluxPipeline.from_pretrained(
|
226 |
-
"black-forest-labs/FLUX.1-dev",
|
227 |
-
torch_dtype=torch.float32, # bfloat16 ๋์ float32 ์ฌ์ฉ
|
228 |
-
use_auth_token=HF_TOKEN
|
229 |
-
)
|
230 |
-
pipe.load_lora_weights(
|
231 |
-
hf_hub_download(
|
232 |
-
"ByteDance/Hyper-SD",
|
233 |
-
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
|
234 |
-
use_auth_token=HF_TOKEN
|
235 |
-
)
|
236 |
-
)
|
237 |
-
pipe.fuse_lora(lora_scale=0.125)
|
238 |
-
pipe.to(device=device)
|
239 |
-
|
240 |
|
241 |
def create_position_grid():
|
242 |
return """
|
|
|
32 |
torch.cuda.synchronize()
|
33 |
gc.collect()
|
34 |
|
35 |
+
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์ค์
|
36 |
+
if torch.cuda.is_available():
|
37 |
+
torch.cuda.empty_cache()
|
38 |
+
torch.backends.cudnn.benchmark = True
|
39 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
40 |
+
|
41 |
+
# ๋ฉ๋ชจ๋ฆฌ ๋ถํ ์ค์
|
42 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = (
|
43 |
+
"max_split_size_mb:128,"
|
44 |
+
"garbage_collection_threshold:0.8,"
|
45 |
+
"memory_fraction:0.9"
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
# ์๋ ํผํฉ ์ ๋ฐ๋(Automatic Mixed Precision) ์ค์
|
50 |
if torch.cuda.is_available():
|
51 |
scaler = torch.amp.GradScaler('cuda')
|
|
|
103 |
assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
104 |
|
105 |
|
106 |
+
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
107 |
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
108 |
pipe = FluxPipeline.from_pretrained(
|
109 |
"black-forest-labs/FLUX.1-dev",
|
|
|
125 |
# GPU ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ
|
126 |
if torch.cuda.is_available():
|
127 |
pipe.to("cuda")
|
128 |
+
# ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ๋ฅผ ์ํ ์ถ๊ฐ ์ค์
|
129 |
+
torch.backends.cudnn.benchmark = True
|
130 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
131 |
|
132 |
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # ๋จ์ผ GPU ์ฌ์ฉ
|
133 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512" # CUDA ๋ฉ๋ชจ๋ฆฌ ํ ๋น ์ค์
|
|
|
218 |
height = int(height * ratio)
|
219 |
width, height = adjust_size_to_multiple_of_8(width, height)
|
220 |
|
221 |
+
clear_memory() # ์์ฑ ์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
222 |
+
|
223 |
with timer("Background generation"):
|
224 |
+
with torch.inference_mode(), torch.cuda.amp.autocast():
|
225 |
+
image = pipe(
|
226 |
+
prompt=prompt,
|
227 |
+
width=width,
|
228 |
+
height=height,
|
229 |
+
num_inference_steps=8,
|
230 |
+
guidance_scale=4.0,
|
231 |
+
max_length=77,
|
232 |
+
).images[0]
|
233 |
+
|
234 |
+
clear_memory() # ์์ฑ ํ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
235 |
+
return image
|
|
|
236 |
except Exception as e:
|
237 |
print(f"Background generation error: {str(e)}")
|
238 |
+
clear_memory() # ์ค๋ฅ ๋ฐ์ ์์๋ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
239 |
return Image.new('RGB', (512, 512), 'white')
|
240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
def create_position_grid():
|
243 |
return """
|