ginipick commited on
Commit
9a8a6d5
ยท
verified ยท
1 Parent(s): 8c99ff5

Update app-backup.py

Browse files
Files changed (1) hide show
  1. app-backup.py +284 -66
app-backup.py CHANGED
@@ -18,14 +18,55 @@ from refiners.fluxion.utils import no_grad
18
  from refiners.solutions import BoxSegmenter
19
  from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
20
  from diffusers import FluxPipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  BoundingBox = tuple[int, int, int, int]
23
 
24
  pillow_heif.register_heif_opener()
25
  pillow_heif.register_avif_opener()
26
 
27
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
28
-
29
  # HF ํ† ํฐ ์„ค์ •
30
  HF_TOKEN = os.getenv("HF_TOKEN")
31
  if HF_TOKEN is None:
@@ -50,9 +91,12 @@ assert isinstance(gd_model, GroundingDinoForObjectDetection)
50
  # FLUX ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™”
51
  pipe = FluxPipeline.from_pretrained(
52
  "black-forest-labs/FLUX.1-dev",
53
- torch_dtype=torch.bfloat16,
54
  use_auth_token=HF_TOKEN
55
  )
 
 
 
56
  pipe.load_lora_weights(
57
  hf_hub_download(
58
  "ByteDance/Hyper-SD",
@@ -61,7 +105,13 @@ pipe.load_lora_weights(
61
  )
62
  )
63
  pipe.fuse_lora(lora_scale=0.125)
64
- pipe.to(device="cuda", dtype=torch.bfloat16)
 
 
 
 
 
 
65
 
66
  class timer:
67
  def __init__(self, method_name="timed process"):
@@ -135,80 +185,151 @@ def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int,
135
  return base_size * 4 // 3, base_size
136
  return base_size, base_size
137
 
 
138
  def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
139
- """๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ํ•จ์ˆ˜"""
140
  try:
141
- # ์„ ํƒ๋œ ๋น„์œจ์— ๋”ฐ๋ผ ํฌ๊ธฐ ๊ณ„์‚ฐ
142
  width, height = calculate_dimensions(aspect_ratio)
143
-
144
- # 8์˜ ๋ฐฐ์ˆ˜๋กœ ์กฐ์ •
145
  width, height = adjust_size_to_multiple_of_8(width, height)
146
 
 
 
 
 
 
 
 
147
  with timer("Background generation"):
148
- image = pipe(
149
- prompt=prompt,
150
- width=width,
151
- height=height,
152
- num_inference_steps=8,
153
- guidance_scale=4.0,
154
- ).images[0]
 
 
 
 
 
155
 
156
  return image
157
  except Exception as e:
158
- raise gr.Error(f"Background generation failed: {str(e)}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
 
 
 
 
 
 
160
 
161
- def combine_with_background(foreground: Image.Image, background: Image.Image) -> Image.Image:
 
162
  """์ „๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํ•ฉ์„ฑ ํ•จ์ˆ˜"""
163
- background = background.resize(foreground.size)
164
- return Image.alpha_composite(background.convert('RGBA'), foreground)
 
 
 
 
 
 
 
 
 
 
165
 
166
- @spaces.GPU
167
  def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
168
  time_log: list[str] = []
169
- if isinstance(prompt, str):
 
 
 
 
 
 
 
 
 
170
  t0 = time.time()
171
- bbox = gd_detect(img, prompt)
172
- time_log.append(f"detect: {time.time() - t0}")
173
- if not bbox:
174
- print(time_log[0])
175
- raise gr.Error("No object detected")
176
- else:
177
- bbox = prompt
178
- t0 = time.time()
179
- mask = segmenter(img, bbox)
180
- time_log.append(f"segment: {time.time() - t0}")
181
- return mask, bbox, time_log
182
 
183
  def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
184
  try:
185
- if img.width > 2048 or img.height > 2048:
186
- orig_res = max(img.width, img.height)
187
- img.thumbnail((2048, 2048))
188
- if isinstance(prompt, tuple):
189
- x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt)
190
- prompt = (x0, y0, x1, y1)
 
 
 
 
 
 
 
 
 
191
 
192
- mask, bbox, time_log = _gpu_process(img, prompt)
193
- masked_alpha = apply_mask(img, mask, defringe=True)
 
194
 
195
  if bg_prompt:
196
  background = generate_background(bg_prompt, aspect_ratio)
197
- combined = combine_with_background(masked_alpha, background)
198
  else:
199
  combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
200
 
201
- thresholded = mask.point(lambda p: 255 if p > 10 else 0)
202
- bbox = thresholded.getbbox()
203
- to_dl = masked_alpha.crop(bbox)
204
 
205
- temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
206
- to_dl.save(temp, format="PNG")
207
- temp.close()
208
-
209
- return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
210
-
211
  except Exception as e:
 
 
212
  raise gr.Error(f"Processing failed: {str(e)}")
213
 
214
  def on_change_bbox(prompts: dict[str, Any] | None):
@@ -218,19 +339,47 @@ def on_change_bbox(prompts: dict[str, Any] | None):
218
  def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
219
  return gr.update(interactive=bool(img and prompt))
220
 
221
- def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[Image.Image, Image.Image]:
 
 
 
 
222
  try:
223
  if img is None or prompt.strip() == "":
224
  raise gr.Error("Please provide both image and prompt")
225
 
226
- # Process the image
 
 
 
 
 
 
 
 
227
  results, _ = _process(img, prompt, bg_prompt, aspect_ratio)
228
 
229
- # ํ•ฉ์„ฑ๋œ ์ด๋ฏธ์ง€์™€ ์ถ”์ถœ๋œ ์ด๋ฏธ์ง€๋งŒ ๋ฐ˜ํ™˜
 
 
 
 
 
 
 
 
 
 
 
 
 
230
  return results[1], results[2]
231
  except Exception as e:
 
232
  raise gr.Error(str(e))
233
-
 
 
234
  def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
235
  try:
236
  if img is None or box_input.strip() == "":
@@ -270,7 +419,7 @@ def update_box_button(img, box_input):
270
  return gr.update(interactive=False, variant="secondary")
271
 
272
 
273
- # ๋งจ ์•ž๋ถ€๋ถ„์— CSS ์ •์˜ ์ถ”๊ฐ€
274
  css = """
275
  footer {display: none}
276
  .main-title {
@@ -321,14 +470,27 @@ button.primary {
321
  button.primary:hover {
322
  background: #1976D2;
323
  }
 
 
 
 
 
 
 
 
 
 
324
  """
325
 
326
- # UI ๋ถ€๋ถ„ ์ˆ˜์ •
 
 
 
327
  with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
328
  gr.HTML("""
329
  <div class="main-title">
330
- <h1>๐ŸŽจ Image Object Extractor</h1>
331
- <p>Extract objects from images using text prompts</p>
332
  </div>
333
  """)
334
 
@@ -359,12 +521,51 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
359
  visible=True,
360
  scale=1
361
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362
  process_btn = gr.Button(
363
  "Process",
364
  variant="primary",
365
  interactive=False
366
  )
367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368
  with gr.Column(scale=1):
369
  with gr.Row():
370
  combined_image = gr.Image(
@@ -396,23 +597,40 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
396
  queue=False
397
  )
398
 
399
- # bg_prompt๊ฐ€ ๋น„์–ด์žˆ์„ ๋•Œ aspect_ratio๋ฅผ ๋น„ํ™œ์„ฑํ™”ํ•˜๋Š” ํ•จ์ˆ˜
400
- def update_aspect_ratio(bg_prompt):
401
- return gr.update(visible=bool(bg_prompt))
 
 
 
 
402
 
403
  bg_prompt.change(
404
- fn=update_aspect_ratio,
405
  inputs=bg_prompt,
406
- outputs=aspect_ratio,
407
  queue=False
408
  )
409
 
410
  process_btn.click(
411
  fn=process_prompt,
412
- inputs=[input_image, text_prompt, bg_prompt, aspect_ratio],
 
 
 
 
 
 
 
413
  outputs=[combined_image, extracted_image],
414
  queue=True
415
  )
416
 
417
- demo.queue(max_size=30, api_open=False)
418
- demo.launch()
 
 
 
 
 
 
 
18
  from refiners.solutions import BoxSegmenter
19
  from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
20
  from diffusers import FluxPipeline
21
+ from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
22
+ import gc
23
+
24
+ def clear_memory():
25
+ """๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ ํ•จ์ˆ˜"""
26
+ gc.collect()
27
+ try:
28
+ if torch.cuda.is_available():
29
+ with torch.cuda.device(0): # ๋ช…์‹œ์ ์œผ๋กœ device 0 ์‚ฌ์šฉ
30
+ torch.cuda.empty_cache()
31
+ except:
32
+ pass
33
+
34
+ # GPU ์„ค์ •
35
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # ๋ช…์‹œ์ ์œผ๋กœ cuda:0 ์ง€์ •
36
+
37
+ # GPU ์„ค์ •์„ try-except๋กœ ๊ฐ์‹ธ๊ธฐ
38
+ if torch.cuda.is_available():
39
+ try:
40
+ with torch.cuda.device(0):
41
+ torch.cuda.empty_cache()
42
+ torch.backends.cudnn.benchmark = True
43
+ torch.backends.cuda.matmul.allow_tf32 = True
44
+ except:
45
+ print("Warning: Could not configure CUDA settings")
46
+
47
+ # ๋ฒˆ์—ญ ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
48
+ model_name = "Helsinki-NLP/opus-mt-ko-en"
49
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
50
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to('cpu')
51
+ translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1)
52
+
53
+ def translate_to_english(text: str) -> str:
54
+ """ํ•œ๊ธ€ ํ…์ŠคํŠธ๋ฅผ ์˜์–ด๋กœ ๋ฒˆ์—ญ"""
55
+ try:
56
+ if any(ord('๊ฐ€') <= ord(char) <= ord('ํžฃ') for char in text):
57
+ translated = translator(text, max_length=128)[0]['translation_text']
58
+ print(f"Translated '{text}' to '{translated}'")
59
+ return translated
60
+ return text
61
+ except Exception as e:
62
+ print(f"Translation error: {str(e)}")
63
+ return text
64
 
65
  BoundingBox = tuple[int, int, int, int]
66
 
67
  pillow_heif.register_heif_opener()
68
  pillow_heif.register_avif_opener()
69
 
 
 
70
  # HF ํ† ํฐ ์„ค์ •
71
  HF_TOKEN = os.getenv("HF_TOKEN")
72
  if HF_TOKEN is None:
 
91
  # FLUX ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™”
92
  pipe = FluxPipeline.from_pretrained(
93
  "black-forest-labs/FLUX.1-dev",
94
+ torch_dtype=torch.float16,
95
  use_auth_token=HF_TOKEN
96
  )
97
+ pipe.enable_attention_slicing(slice_size="auto")
98
+
99
+ # LoRA ๊ฐ€์ค‘์น˜ ๋กœ๋“œ
100
  pipe.load_lora_weights(
101
  hf_hub_download(
102
  "ByteDance/Hyper-SD",
 
105
  )
106
  )
107
  pipe.fuse_lora(lora_scale=0.125)
108
+
109
+ # GPU ์„ค์ •์„ try-except๋กœ ๊ฐ์‹ธ๊ธฐ
110
+ try:
111
+ if torch.cuda.is_available():
112
+ pipe = pipe.to("cuda:0") # ๋ช…์‹œ์ ์œผ๋กœ cuda:0 ์ง€์ •
113
+ except Exception as e:
114
+ print(f"Warning: Could not move pipeline to CUDA: {str(e)}")
115
 
116
  class timer:
117
  def __init__(self, method_name="timed process"):
 
185
  return base_size * 4 // 3, base_size
186
  return base_size, base_size
187
 
188
+ @spaces.GPU(duration=20) # 40์ดˆ์—์„œ 20์ดˆ๋กœ ๊ฐ์†Œ
189
  def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
 
190
  try:
 
191
  width, height = calculate_dimensions(aspect_ratio)
 
 
192
  width, height = adjust_size_to_multiple_of_8(width, height)
193
 
194
+ max_size = 768
195
+ if width > max_size or height > max_size:
196
+ ratio = max_size / max(width, height)
197
+ width = int(width * ratio)
198
+ height = int(height * ratio)
199
+ width, height = adjust_size_to_multiple_of_8(width, height)
200
+
201
  with timer("Background generation"):
202
+ try:
203
+ with torch.inference_mode():
204
+ image = pipe(
205
+ prompt=prompt,
206
+ width=width,
207
+ height=height,
208
+ num_inference_steps=8,
209
+ guidance_scale=4.0
210
+ ).images[0]
211
+ except Exception as e:
212
+ print(f"Pipeline error: {str(e)}")
213
+ return Image.new('RGB', (width, height), 'white')
214
 
215
  return image
216
  except Exception as e:
217
+ print(f"Background generation error: {str(e)}")
218
+ return Image.new('RGB', (512, 512), 'white')
219
+
220
+ def create_position_grid():
221
+ return """
222
+ <div class="position-grid" style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; width: 150px; margin: auto;">
223
+ <button class="position-btn" data-pos="top-left">โ†–</button>
224
+ <button class="position-btn" data-pos="top-center">โ†‘</button>
225
+ <button class="position-btn" data-pos="top-right">โ†—</button>
226
+ <button class="position-btn" data-pos="middle-left">โ†</button>
227
+ <button class="position-btn" data-pos="middle-center">โ€ข</button>
228
+ <button class="position-btn" data-pos="middle-right">โ†’</button>
229
+ <button class="position-btn" data-pos="bottom-left">โ†™</button>
230
+ <button class="position-btn" data-pos="bottom-center" data-default="true">โ†“</button>
231
+ <button class="position-btn" data-pos="bottom-right">โ†˜</button>
232
+ </div>
233
+ """
234
+
235
+ def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]:
236
+ """์˜ค๋ธŒ์ ํŠธ์˜ ์œ„์น˜ ๊ณ„์‚ฐ"""
237
+ bg_width, bg_height = bg_size
238
+ obj_width, obj_height = obj_size
239
+
240
+ positions = {
241
+ "top-left": (0, 0),
242
+ "top-center": ((bg_width - obj_width) // 2, 0),
243
+ "top-right": (bg_width - obj_width, 0),
244
+ "middle-left": (0, (bg_height - obj_height) // 2),
245
+ "middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2),
246
+ "middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2),
247
+ "bottom-left": (0, bg_height - obj_height),
248
+ "bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height),
249
+ "bottom-right": (bg_width - obj_width, bg_height - obj_height)
250
+ }
251
+
252
+ return positions.get(position, positions["bottom-center"])
253
 
254
+ def resize_object(image: Image.Image, scale_percent: float) -> Image.Image:
255
+ """์˜ค๋ธŒ์ ํŠธ ํฌ๊ธฐ ์กฐ์ •"""
256
+ width = int(image.width * scale_percent / 100)
257
+ height = int(image.height * scale_percent / 100)
258
+ return image.resize((width, height), Image.Resampling.LANCZOS)
259
 
260
+ def combine_with_background(foreground: Image.Image, background: Image.Image,
261
+ position: str = "bottom-center", scale_percent: float = 100) -> Image.Image:
262
  """์ „๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํ•ฉ์„ฑ ํ•จ์ˆ˜"""
263
+ # ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง€ ์ค€๋น„
264
+ result = background.convert('RGBA')
265
+
266
+ # ์˜ค๋ธŒ์ ํŠธ ํฌ๊ธฐ ์กฐ์ •
267
+ scaled_foreground = resize_object(foreground, scale_percent)
268
+
269
+ # ์˜ค๋ธŒ์ ํŠธ ์œ„์น˜ ๊ณ„์‚ฐ
270
+ x, y = calculate_object_position(position, result.size, scaled_foreground.size)
271
+
272
+ # ํ•ฉ์„ฑ
273
+ result.paste(scaled_foreground, (x, y), scaled_foreground)
274
+ return result
275
 
276
+ @spaces.GPU(duration=30) # 120์ดˆ์—์„œ 30์ดˆ๋กœ ๊ฐ์†Œ
277
  def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
278
  time_log: list[str] = []
279
+ try:
280
+ if isinstance(prompt, str):
281
+ t0 = time.time()
282
+ bbox = gd_detect(img, prompt)
283
+ time_log.append(f"detect: {time.time() - t0}")
284
+ if not bbox:
285
+ print(time_log[0])
286
+ raise gr.Error("No object detected")
287
+ else:
288
+ bbox = prompt
289
  t0 = time.time()
290
+ mask = segmenter(img, bbox)
291
+ time_log.append(f"segment: {time.time() - t0}")
292
+ return mask, bbox, time_log
293
+ except Exception as e:
294
+ print(f"GPU process error: {str(e)}")
295
+ raise
 
 
 
 
 
296
 
297
  def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
298
  try:
299
+ # ์ž…๋ ฅ ์ด๋ฏธ์ง€ ํฌ๊ธฐ ์ œํ•œ
300
+ max_size = 1024
301
+ if img.width > max_size or img.height > max_size:
302
+ ratio = max_size / max(img.width, img.height)
303
+ new_size = (int(img.width * ratio), int(img.height * ratio))
304
+ img = img.resize(new_size, Image.LANCZOS)
305
+
306
+ # CUDA ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ ์ˆ˜์ •
307
+ try:
308
+ if torch.cuda.is_available():
309
+ current_device = torch.cuda.current_device()
310
+ with torch.cuda.device(current_device):
311
+ torch.cuda.empty_cache()
312
+ except Exception as e:
313
+ print(f"CUDA memory management failed: {e}")
314
 
315
+ with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
316
+ mask, bbox, time_log = _gpu_process(img, prompt)
317
+ masked_alpha = apply_mask(img, mask, defringe=True)
318
 
319
  if bg_prompt:
320
  background = generate_background(bg_prompt, aspect_ratio)
321
+ combined = background
322
  else:
323
  combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
324
 
325
+ clear_memory()
 
 
326
 
327
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp:
328
+ combined.save(temp.name)
329
+ return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
 
 
 
330
  except Exception as e:
331
+ clear_memory()
332
+ print(f"Processing error: {str(e)}")
333
  raise gr.Error(f"Processing failed: {str(e)}")
334
 
335
  def on_change_bbox(prompts: dict[str, Any] | None):
 
339
  def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
340
  return gr.update(interactive=bool(img and prompt))
341
 
342
+
343
+
344
+ def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None,
345
+ aspect_ratio: str = "1:1", position: str = "bottom-center",
346
+ scale_percent: float = 100) -> tuple[Image.Image, Image.Image]:
347
  try:
348
  if img is None or prompt.strip() == "":
349
  raise gr.Error("Please provide both image and prompt")
350
 
351
+ print(f"Processing with position: {position}, scale: {scale_percent}")
352
+
353
+ try:
354
+ prompt = translate_to_english(prompt)
355
+ if bg_prompt:
356
+ bg_prompt = translate_to_english(bg_prompt)
357
+ except Exception as e:
358
+ print(f"Translation error (continuing with original text): {str(e)}")
359
+
360
  results, _ = _process(img, prompt, bg_prompt, aspect_ratio)
361
 
362
+ if bg_prompt:
363
+ try:
364
+ combined = combine_with_background(
365
+ foreground=results[2],
366
+ background=results[1],
367
+ position=position,
368
+ scale_percent=scale_percent
369
+ )
370
+ print(f"Combined image created with position: {position}")
371
+ return combined, results[2]
372
+ except Exception as e:
373
+ print(f"Combination error: {str(e)}")
374
+ return results[1], results[2]
375
+
376
  return results[1], results[2]
377
  except Exception as e:
378
+ print(f"Error in process_prompt: {str(e)}")
379
  raise gr.Error(str(e))
380
+ finally:
381
+ clear_memory()
382
+
383
  def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
384
  try:
385
  if img is None or box_input.strip() == "":
 
419
  return gr.update(interactive=False, variant="secondary")
420
 
421
 
422
+ # CSS ์ •์˜
423
  css = """
424
  footer {display: none}
425
  .main-title {
 
470
  button.primary:hover {
471
  background: #1976D2;
472
  }
473
+ .position-btn {
474
+ transition: all 0.3s ease;
475
+ }
476
+ .position-btn:hover {
477
+ background-color: #e3f2fd;
478
+ }
479
+ .position-btn.selected {
480
+ background-color: #2196F3;
481
+ color: white;
482
+ }
483
  """
484
 
485
+ # UI ๊ตฌ์„ฑ
486
+ # UI ๊ตฌ์„ฑ ๋ถ€๋ถ„์—์„œ process_btn์„ ์œ„๋กœ ์ด๋™ํ•˜๊ณ  position_grid.click ๋ถ€๋ถ„ ์ œ๊ฑฐ
487
+
488
+ # UI ๊ตฌ์„ฑ
489
  with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
490
  gr.HTML("""
491
  <div class="main-title">
492
+ <h1>๐ŸŽจGiniGen Canvas</h1>
493
+ <p>AI Integrated Image Creator: Extract objects, generate backgrounds, and adjust ratios and positions to create complete images with AI.</p>
494
  </div>
495
  """)
496
 
 
521
  visible=True,
522
  scale=1
523
  )
524
+
525
+ with gr.Row(visible=False) as object_controls:
526
+ with gr.Column(scale=1):
527
+ with gr.Row():
528
+ position = gr.State(value="bottom-center")
529
+ btn_top_left = gr.Button("โ†–")
530
+ btn_top_center = gr.Button("โ†‘")
531
+ btn_top_right = gr.Button("โ†—")
532
+ with gr.Row():
533
+ btn_middle_left = gr.Button("โ†")
534
+ btn_middle_center = gr.Button("โ€ข")
535
+ btn_middle_right = gr.Button("โ†’")
536
+ with gr.Row():
537
+ btn_bottom_left = gr.Button("โ†™")
538
+ btn_bottom_center = gr.Button("โ†“")
539
+ btn_bottom_right = gr.Button("โ†˜")
540
+ with gr.Column(scale=1):
541
+ scale_slider = gr.Slider(
542
+ minimum=10,
543
+ maximum=200,
544
+ value=50,
545
+ step=5,
546
+ label="Object Size (%)"
547
+ )
548
+
549
  process_btn = gr.Button(
550
  "Process",
551
  variant="primary",
552
  interactive=False
553
  )
554
 
555
+ # ๊ฐ ๋ฒ„ํŠผ์— ๋Œ€ํ•œ ํด๋ฆญ ์ด๋ฒคํŠธ ์ฒ˜๋ฆฌ
556
+ def update_position(new_position):
557
+ return new_position
558
+
559
+ btn_top_left.click(fn=lambda: update_position("top-left"), outputs=position)
560
+ btn_top_center.click(fn=lambda: update_position("top-center"), outputs=position)
561
+ btn_top_right.click(fn=lambda: update_position("top-right"), outputs=position)
562
+ btn_middle_left.click(fn=lambda: update_position("middle-left"), outputs=position)
563
+ btn_middle_center.click(fn=lambda: update_position("middle-center"), outputs=position)
564
+ btn_middle_right.click(fn=lambda: update_position("middle-right"), outputs=position)
565
+ btn_bottom_left.click(fn=lambda: update_position("bottom-left"), outputs=position)
566
+ btn_bottom_center.click(fn=lambda: update_position("bottom-center"), outputs=position)
567
+ btn_bottom_right.click(fn=lambda: update_position("bottom-right"), outputs=position)
568
+
569
  with gr.Column(scale=1):
570
  with gr.Row():
571
  combined_image = gr.Image(
 
597
  queue=False
598
  )
599
 
600
+ def update_controls(bg_prompt):
601
+ """๋ฐฐ๊ฒฝ ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ ์—ฌ๋ถ€์— ๋”ฐ๋ผ ์ปจํŠธ๋กค ํ‘œ์‹œ ์—…๋ฐ์ดํŠธ"""
602
+ is_visible = bool(bg_prompt)
603
+ return [
604
+ gr.update(visible=is_visible), # aspect_ratio
605
+ gr.update(visible=is_visible), # object_controls
606
+ ]
607
 
608
  bg_prompt.change(
609
+ fn=update_controls,
610
  inputs=bg_prompt,
611
+ outputs=[aspect_ratio, object_controls],
612
  queue=False
613
  )
614
 
615
  process_btn.click(
616
  fn=process_prompt,
617
+ inputs=[
618
+ input_image,
619
+ text_prompt,
620
+ bg_prompt,
621
+ aspect_ratio,
622
+ position,
623
+ scale_slider
624
+ ],
625
  outputs=[combined_image, extracted_image],
626
  queue=True
627
  )
628
 
629
+
630
+ demo.queue(max_size=10) # ํ ํฌ๊ธฐ ์ œํ•œ
631
+ demo.launch(
632
+ server_name="0.0.0.0",
633
+ server_port=7860,
634
+ share=False,
635
+ max_threads=2 # ์Šค๋ ˆ๋“œ ์ˆ˜ ์ œํ•œ
636
+ )