Spaces:
Running
on
Zero
Running
on
Zero
Update app-backup.py
Browse files- app-backup.py +284 -66
app-backup.py
CHANGED
@@ -18,14 +18,55 @@ from refiners.fluxion.utils import no_grad
|
|
18 |
from refiners.solutions import BoxSegmenter
|
19 |
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
|
20 |
from diffusers import FluxPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
BoundingBox = tuple[int, int, int, int]
|
23 |
|
24 |
pillow_heif.register_heif_opener()
|
25 |
pillow_heif.register_avif_opener()
|
26 |
|
27 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
-
|
29 |
# HF ํ ํฐ ์ค์
|
30 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
31 |
if HF_TOKEN is None:
|
@@ -50,9 +91,12 @@ assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
|
50 |
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
51 |
pipe = FluxPipeline.from_pretrained(
|
52 |
"black-forest-labs/FLUX.1-dev",
|
53 |
-
torch_dtype=torch.
|
54 |
use_auth_token=HF_TOKEN
|
55 |
)
|
|
|
|
|
|
|
56 |
pipe.load_lora_weights(
|
57 |
hf_hub_download(
|
58 |
"ByteDance/Hyper-SD",
|
@@ -61,7 +105,13 @@ pipe.load_lora_weights(
|
|
61 |
)
|
62 |
)
|
63 |
pipe.fuse_lora(lora_scale=0.125)
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
class timer:
|
67 |
def __init__(self, method_name="timed process"):
|
@@ -135,80 +185,151 @@ def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int,
|
|
135 |
return base_size * 4 // 3, base_size
|
136 |
return base_size, base_size
|
137 |
|
|
|
138 |
def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
|
139 |
-
"""๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์์ฑ ํจ์"""
|
140 |
try:
|
141 |
-
# ์ ํ๋ ๋น์จ์ ๋ฐ๋ผ ํฌ๊ธฐ ๊ณ์ฐ
|
142 |
width, height = calculate_dimensions(aspect_ratio)
|
143 |
-
|
144 |
-
# 8์ ๋ฐฐ์๋ก ์กฐ์
|
145 |
width, height = adjust_size_to_multiple_of_8(width, height)
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
with timer("Background generation"):
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
return image
|
157 |
except Exception as e:
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
def combine_with_background(foreground: Image.Image, background: Image.Image
|
|
|
162 |
"""์ ๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํฉ์ฑ ํจ์"""
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
@spaces.GPU
|
167 |
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
|
168 |
time_log: list[str] = []
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
t0 = time.time()
|
171 |
-
|
172 |
-
time_log.append(f"
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
bbox = prompt
|
178 |
-
t0 = time.time()
|
179 |
-
mask = segmenter(img, bbox)
|
180 |
-
time_log.append(f"segment: {time.time() - t0}")
|
181 |
-
return mask, bbox, time_log
|
182 |
|
183 |
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
|
184 |
try:
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
|
193 |
-
|
|
|
194 |
|
195 |
if bg_prompt:
|
196 |
background = generate_background(bg_prompt, aspect_ratio)
|
197 |
-
combined =
|
198 |
else:
|
199 |
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
|
200 |
|
201 |
-
|
202 |
-
bbox = thresholded.getbbox()
|
203 |
-
to_dl = masked_alpha.crop(bbox)
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
|
210 |
-
|
211 |
except Exception as e:
|
|
|
|
|
212 |
raise gr.Error(f"Processing failed: {str(e)}")
|
213 |
|
214 |
def on_change_bbox(prompts: dict[str, Any] | None):
|
@@ -218,19 +339,47 @@ def on_change_bbox(prompts: dict[str, Any] | None):
|
|
218 |
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
|
219 |
return gr.update(interactive=bool(img and prompt))
|
220 |
|
221 |
-
|
|
|
|
|
|
|
|
|
222 |
try:
|
223 |
if img is None or prompt.strip() == "":
|
224 |
raise gr.Error("Please provide both image and prompt")
|
225 |
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
results, _ = _process(img, prompt, bg_prompt, aspect_ratio)
|
228 |
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
return results[1], results[2]
|
231 |
except Exception as e:
|
|
|
232 |
raise gr.Error(str(e))
|
233 |
-
|
|
|
|
|
234 |
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
|
235 |
try:
|
236 |
if img is None or box_input.strip() == "":
|
@@ -270,7 +419,7 @@ def update_box_button(img, box_input):
|
|
270 |
return gr.update(interactive=False, variant="secondary")
|
271 |
|
272 |
|
273 |
-
#
|
274 |
css = """
|
275 |
footer {display: none}
|
276 |
.main-title {
|
@@ -321,14 +470,27 @@ button.primary {
|
|
321 |
button.primary:hover {
|
322 |
background: #1976D2;
|
323 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
"""
|
325 |
|
326 |
-
# UI
|
|
|
|
|
|
|
327 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
328 |
gr.HTML("""
|
329 |
<div class="main-title">
|
330 |
-
<h1>๐จ
|
331 |
-
<p>Extract objects
|
332 |
</div>
|
333 |
""")
|
334 |
|
@@ -359,12 +521,51 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
359 |
visible=True,
|
360 |
scale=1
|
361 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
process_btn = gr.Button(
|
363 |
"Process",
|
364 |
variant="primary",
|
365 |
interactive=False
|
366 |
)
|
367 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
with gr.Column(scale=1):
|
369 |
with gr.Row():
|
370 |
combined_image = gr.Image(
|
@@ -396,23 +597,40 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
396 |
queue=False
|
397 |
)
|
398 |
|
399 |
-
|
400 |
-
|
401 |
-
|
|
|
|
|
|
|
|
|
402 |
|
403 |
bg_prompt.change(
|
404 |
-
fn=
|
405 |
inputs=bg_prompt,
|
406 |
-
outputs=aspect_ratio,
|
407 |
queue=False
|
408 |
)
|
409 |
|
410 |
process_btn.click(
|
411 |
fn=process_prompt,
|
412 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
outputs=[combined_image, extracted_image],
|
414 |
queue=True
|
415 |
)
|
416 |
|
417 |
-
|
418 |
-
demo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
from refiners.solutions import BoxSegmenter
|
19 |
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
|
20 |
from diffusers import FluxPipeline
|
21 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
22 |
+
import gc
|
23 |
+
|
24 |
+
def clear_memory():
|
25 |
+
"""๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์"""
|
26 |
+
gc.collect()
|
27 |
+
try:
|
28 |
+
if torch.cuda.is_available():
|
29 |
+
with torch.cuda.device(0): # ๋ช
์์ ์ผ๋ก device 0 ์ฌ์ฉ
|
30 |
+
torch.cuda.empty_cache()
|
31 |
+
except:
|
32 |
+
pass
|
33 |
+
|
34 |
+
# GPU ์ค์
|
35 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # ๋ช
์์ ์ผ๋ก cuda:0 ์ง์
|
36 |
+
|
37 |
+
# GPU ์ค์ ์ try-except๋ก ๊ฐ์ธ๊ธฐ
|
38 |
+
if torch.cuda.is_available():
|
39 |
+
try:
|
40 |
+
with torch.cuda.device(0):
|
41 |
+
torch.cuda.empty_cache()
|
42 |
+
torch.backends.cudnn.benchmark = True
|
43 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
44 |
+
except:
|
45 |
+
print("Warning: Could not configure CUDA settings")
|
46 |
+
|
47 |
+
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
|
48 |
+
model_name = "Helsinki-NLP/opus-mt-ko-en"
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
50 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to('cpu')
|
51 |
+
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1)
|
52 |
+
|
53 |
+
def translate_to_english(text: str) -> str:
|
54 |
+
"""ํ๊ธ ํ
์คํธ๋ฅผ ์์ด๋ก ๋ฒ์ญ"""
|
55 |
+
try:
|
56 |
+
if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text):
|
57 |
+
translated = translator(text, max_length=128)[0]['translation_text']
|
58 |
+
print(f"Translated '{text}' to '{translated}'")
|
59 |
+
return translated
|
60 |
+
return text
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Translation error: {str(e)}")
|
63 |
+
return text
|
64 |
|
65 |
BoundingBox = tuple[int, int, int, int]
|
66 |
|
67 |
pillow_heif.register_heif_opener()
|
68 |
pillow_heif.register_avif_opener()
|
69 |
|
|
|
|
|
70 |
# HF ํ ํฐ ์ค์
|
71 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
72 |
if HF_TOKEN is None:
|
|
|
91 |
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
92 |
pipe = FluxPipeline.from_pretrained(
|
93 |
"black-forest-labs/FLUX.1-dev",
|
94 |
+
torch_dtype=torch.float16,
|
95 |
use_auth_token=HF_TOKEN
|
96 |
)
|
97 |
+
pipe.enable_attention_slicing(slice_size="auto")
|
98 |
+
|
99 |
+
# LoRA ๊ฐ์ค์น ๋ก๋
|
100 |
pipe.load_lora_weights(
|
101 |
hf_hub_download(
|
102 |
"ByteDance/Hyper-SD",
|
|
|
105 |
)
|
106 |
)
|
107 |
pipe.fuse_lora(lora_scale=0.125)
|
108 |
+
|
109 |
+
# GPU ์ค์ ์ try-except๋ก ๊ฐ์ธ๊ธฐ
|
110 |
+
try:
|
111 |
+
if torch.cuda.is_available():
|
112 |
+
pipe = pipe.to("cuda:0") # ๋ช
์์ ์ผ๋ก cuda:0 ์ง์
|
113 |
+
except Exception as e:
|
114 |
+
print(f"Warning: Could not move pipeline to CUDA: {str(e)}")
|
115 |
|
116 |
class timer:
|
117 |
def __init__(self, method_name="timed process"):
|
|
|
185 |
return base_size * 4 // 3, base_size
|
186 |
return base_size, base_size
|
187 |
|
188 |
+
@spaces.GPU(duration=20) # 40์ด์์ 20์ด๋ก ๊ฐ์
|
189 |
def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
|
|
|
190 |
try:
|
|
|
191 |
width, height = calculate_dimensions(aspect_ratio)
|
|
|
|
|
192 |
width, height = adjust_size_to_multiple_of_8(width, height)
|
193 |
|
194 |
+
max_size = 768
|
195 |
+
if width > max_size or height > max_size:
|
196 |
+
ratio = max_size / max(width, height)
|
197 |
+
width = int(width * ratio)
|
198 |
+
height = int(height * ratio)
|
199 |
+
width, height = adjust_size_to_multiple_of_8(width, height)
|
200 |
+
|
201 |
with timer("Background generation"):
|
202 |
+
try:
|
203 |
+
with torch.inference_mode():
|
204 |
+
image = pipe(
|
205 |
+
prompt=prompt,
|
206 |
+
width=width,
|
207 |
+
height=height,
|
208 |
+
num_inference_steps=8,
|
209 |
+
guidance_scale=4.0
|
210 |
+
).images[0]
|
211 |
+
except Exception as e:
|
212 |
+
print(f"Pipeline error: {str(e)}")
|
213 |
+
return Image.new('RGB', (width, height), 'white')
|
214 |
|
215 |
return image
|
216 |
except Exception as e:
|
217 |
+
print(f"Background generation error: {str(e)}")
|
218 |
+
return Image.new('RGB', (512, 512), 'white')
|
219 |
+
|
220 |
+
def create_position_grid():
|
221 |
+
return """
|
222 |
+
<div class="position-grid" style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; width: 150px; margin: auto;">
|
223 |
+
<button class="position-btn" data-pos="top-left">โ</button>
|
224 |
+
<button class="position-btn" data-pos="top-center">โ</button>
|
225 |
+
<button class="position-btn" data-pos="top-right">โ</button>
|
226 |
+
<button class="position-btn" data-pos="middle-left">โ</button>
|
227 |
+
<button class="position-btn" data-pos="middle-center">โข</button>
|
228 |
+
<button class="position-btn" data-pos="middle-right">โ</button>
|
229 |
+
<button class="position-btn" data-pos="bottom-left">โ</button>
|
230 |
+
<button class="position-btn" data-pos="bottom-center" data-default="true">โ</button>
|
231 |
+
<button class="position-btn" data-pos="bottom-right">โ</button>
|
232 |
+
</div>
|
233 |
+
"""
|
234 |
+
|
235 |
+
def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]:
|
236 |
+
"""์ค๋ธ์ ํธ์ ์์น ๊ณ์ฐ"""
|
237 |
+
bg_width, bg_height = bg_size
|
238 |
+
obj_width, obj_height = obj_size
|
239 |
+
|
240 |
+
positions = {
|
241 |
+
"top-left": (0, 0),
|
242 |
+
"top-center": ((bg_width - obj_width) // 2, 0),
|
243 |
+
"top-right": (bg_width - obj_width, 0),
|
244 |
+
"middle-left": (0, (bg_height - obj_height) // 2),
|
245 |
+
"middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2),
|
246 |
+
"middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2),
|
247 |
+
"bottom-left": (0, bg_height - obj_height),
|
248 |
+
"bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height),
|
249 |
+
"bottom-right": (bg_width - obj_width, bg_height - obj_height)
|
250 |
+
}
|
251 |
+
|
252 |
+
return positions.get(position, positions["bottom-center"])
|
253 |
|
254 |
+
def resize_object(image: Image.Image, scale_percent: float) -> Image.Image:
|
255 |
+
"""์ค๋ธ์ ํธ ํฌ๊ธฐ ์กฐ์ """
|
256 |
+
width = int(image.width * scale_percent / 100)
|
257 |
+
height = int(image.height * scale_percent / 100)
|
258 |
+
return image.resize((width, height), Image.Resampling.LANCZOS)
|
259 |
|
260 |
+
def combine_with_background(foreground: Image.Image, background: Image.Image,
|
261 |
+
position: str = "bottom-center", scale_percent: float = 100) -> Image.Image:
|
262 |
"""์ ๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํฉ์ฑ ํจ์"""
|
263 |
+
# ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์ค๋น
|
264 |
+
result = background.convert('RGBA')
|
265 |
+
|
266 |
+
# ์ค๋ธ์ ํธ ํฌ๊ธฐ ์กฐ์
|
267 |
+
scaled_foreground = resize_object(foreground, scale_percent)
|
268 |
+
|
269 |
+
# ์ค๋ธ์ ํธ ์์น ๊ณ์ฐ
|
270 |
+
x, y = calculate_object_position(position, result.size, scaled_foreground.size)
|
271 |
+
|
272 |
+
# ํฉ์ฑ
|
273 |
+
result.paste(scaled_foreground, (x, y), scaled_foreground)
|
274 |
+
return result
|
275 |
|
276 |
+
@spaces.GPU(duration=30) # 120์ด์์ 30์ด๋ก ๊ฐ์
|
277 |
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
|
278 |
time_log: list[str] = []
|
279 |
+
try:
|
280 |
+
if isinstance(prompt, str):
|
281 |
+
t0 = time.time()
|
282 |
+
bbox = gd_detect(img, prompt)
|
283 |
+
time_log.append(f"detect: {time.time() - t0}")
|
284 |
+
if not bbox:
|
285 |
+
print(time_log[0])
|
286 |
+
raise gr.Error("No object detected")
|
287 |
+
else:
|
288 |
+
bbox = prompt
|
289 |
t0 = time.time()
|
290 |
+
mask = segmenter(img, bbox)
|
291 |
+
time_log.append(f"segment: {time.time() - t0}")
|
292 |
+
return mask, bbox, time_log
|
293 |
+
except Exception as e:
|
294 |
+
print(f"GPU process error: {str(e)}")
|
295 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
|
298 |
try:
|
299 |
+
# ์
๋ ฅ ์ด๋ฏธ์ง ํฌ๊ธฐ ์ ํ
|
300 |
+
max_size = 1024
|
301 |
+
if img.width > max_size or img.height > max_size:
|
302 |
+
ratio = max_size / max(img.width, img.height)
|
303 |
+
new_size = (int(img.width * ratio), int(img.height * ratio))
|
304 |
+
img = img.resize(new_size, Image.LANCZOS)
|
305 |
+
|
306 |
+
# CUDA ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์์
|
307 |
+
try:
|
308 |
+
if torch.cuda.is_available():
|
309 |
+
current_device = torch.cuda.current_device()
|
310 |
+
with torch.cuda.device(current_device):
|
311 |
+
torch.cuda.empty_cache()
|
312 |
+
except Exception as e:
|
313 |
+
print(f"CUDA memory management failed: {e}")
|
314 |
|
315 |
+
with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
|
316 |
+
mask, bbox, time_log = _gpu_process(img, prompt)
|
317 |
+
masked_alpha = apply_mask(img, mask, defringe=True)
|
318 |
|
319 |
if bg_prompt:
|
320 |
background = generate_background(bg_prompt, aspect_ratio)
|
321 |
+
combined = background
|
322 |
else:
|
323 |
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
|
324 |
|
325 |
+
clear_memory()
|
|
|
|
|
326 |
|
327 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp:
|
328 |
+
combined.save(temp.name)
|
329 |
+
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
|
|
|
|
|
|
|
330 |
except Exception as e:
|
331 |
+
clear_memory()
|
332 |
+
print(f"Processing error: {str(e)}")
|
333 |
raise gr.Error(f"Processing failed: {str(e)}")
|
334 |
|
335 |
def on_change_bbox(prompts: dict[str, Any] | None):
|
|
|
339 |
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
|
340 |
return gr.update(interactive=bool(img and prompt))
|
341 |
|
342 |
+
|
343 |
+
|
344 |
+
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None,
|
345 |
+
aspect_ratio: str = "1:1", position: str = "bottom-center",
|
346 |
+
scale_percent: float = 100) -> tuple[Image.Image, Image.Image]:
|
347 |
try:
|
348 |
if img is None or prompt.strip() == "":
|
349 |
raise gr.Error("Please provide both image and prompt")
|
350 |
|
351 |
+
print(f"Processing with position: {position}, scale: {scale_percent}")
|
352 |
+
|
353 |
+
try:
|
354 |
+
prompt = translate_to_english(prompt)
|
355 |
+
if bg_prompt:
|
356 |
+
bg_prompt = translate_to_english(bg_prompt)
|
357 |
+
except Exception as e:
|
358 |
+
print(f"Translation error (continuing with original text): {str(e)}")
|
359 |
+
|
360 |
results, _ = _process(img, prompt, bg_prompt, aspect_ratio)
|
361 |
|
362 |
+
if bg_prompt:
|
363 |
+
try:
|
364 |
+
combined = combine_with_background(
|
365 |
+
foreground=results[2],
|
366 |
+
background=results[1],
|
367 |
+
position=position,
|
368 |
+
scale_percent=scale_percent
|
369 |
+
)
|
370 |
+
print(f"Combined image created with position: {position}")
|
371 |
+
return combined, results[2]
|
372 |
+
except Exception as e:
|
373 |
+
print(f"Combination error: {str(e)}")
|
374 |
+
return results[1], results[2]
|
375 |
+
|
376 |
return results[1], results[2]
|
377 |
except Exception as e:
|
378 |
+
print(f"Error in process_prompt: {str(e)}")
|
379 |
raise gr.Error(str(e))
|
380 |
+
finally:
|
381 |
+
clear_memory()
|
382 |
+
|
383 |
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
|
384 |
try:
|
385 |
if img is None or box_input.strip() == "":
|
|
|
419 |
return gr.update(interactive=False, variant="secondary")
|
420 |
|
421 |
|
422 |
+
# CSS ์ ์
|
423 |
css = """
|
424 |
footer {display: none}
|
425 |
.main-title {
|
|
|
470 |
button.primary:hover {
|
471 |
background: #1976D2;
|
472 |
}
|
473 |
+
.position-btn {
|
474 |
+
transition: all 0.3s ease;
|
475 |
+
}
|
476 |
+
.position-btn:hover {
|
477 |
+
background-color: #e3f2fd;
|
478 |
+
}
|
479 |
+
.position-btn.selected {
|
480 |
+
background-color: #2196F3;
|
481 |
+
color: white;
|
482 |
+
}
|
483 |
"""
|
484 |
|
485 |
+
# UI ๊ตฌ์ฑ
|
486 |
+
# UI ๊ตฌ์ฑ ๋ถ๋ถ์์ process_btn์ ์๋ก ์ด๋ํ๊ณ position_grid.click ๋ถ๋ถ ์ ๊ฑฐ
|
487 |
+
|
488 |
+
# UI ๊ตฌ์ฑ
|
489 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
490 |
gr.HTML("""
|
491 |
<div class="main-title">
|
492 |
+
<h1>๐จGiniGen Canvas</h1>
|
493 |
+
<p>AI Integrated Image Creator: Extract objects, generate backgrounds, and adjust ratios and positions to create complete images with AI.</p>
|
494 |
</div>
|
495 |
""")
|
496 |
|
|
|
521 |
visible=True,
|
522 |
scale=1
|
523 |
)
|
524 |
+
|
525 |
+
with gr.Row(visible=False) as object_controls:
|
526 |
+
with gr.Column(scale=1):
|
527 |
+
with gr.Row():
|
528 |
+
position = gr.State(value="bottom-center")
|
529 |
+
btn_top_left = gr.Button("โ")
|
530 |
+
btn_top_center = gr.Button("โ")
|
531 |
+
btn_top_right = gr.Button("โ")
|
532 |
+
with gr.Row():
|
533 |
+
btn_middle_left = gr.Button("โ")
|
534 |
+
btn_middle_center = gr.Button("โข")
|
535 |
+
btn_middle_right = gr.Button("โ")
|
536 |
+
with gr.Row():
|
537 |
+
btn_bottom_left = gr.Button("โ")
|
538 |
+
btn_bottom_center = gr.Button("โ")
|
539 |
+
btn_bottom_right = gr.Button("โ")
|
540 |
+
with gr.Column(scale=1):
|
541 |
+
scale_slider = gr.Slider(
|
542 |
+
minimum=10,
|
543 |
+
maximum=200,
|
544 |
+
value=50,
|
545 |
+
step=5,
|
546 |
+
label="Object Size (%)"
|
547 |
+
)
|
548 |
+
|
549 |
process_btn = gr.Button(
|
550 |
"Process",
|
551 |
variant="primary",
|
552 |
interactive=False
|
553 |
)
|
554 |
|
555 |
+
# ๊ฐ ๋ฒํผ์ ๋ํ ํด๋ฆญ ์ด๋ฒคํธ ์ฒ๋ฆฌ
|
556 |
+
def update_position(new_position):
|
557 |
+
return new_position
|
558 |
+
|
559 |
+
btn_top_left.click(fn=lambda: update_position("top-left"), outputs=position)
|
560 |
+
btn_top_center.click(fn=lambda: update_position("top-center"), outputs=position)
|
561 |
+
btn_top_right.click(fn=lambda: update_position("top-right"), outputs=position)
|
562 |
+
btn_middle_left.click(fn=lambda: update_position("middle-left"), outputs=position)
|
563 |
+
btn_middle_center.click(fn=lambda: update_position("middle-center"), outputs=position)
|
564 |
+
btn_middle_right.click(fn=lambda: update_position("middle-right"), outputs=position)
|
565 |
+
btn_bottom_left.click(fn=lambda: update_position("bottom-left"), outputs=position)
|
566 |
+
btn_bottom_center.click(fn=lambda: update_position("bottom-center"), outputs=position)
|
567 |
+
btn_bottom_right.click(fn=lambda: update_position("bottom-right"), outputs=position)
|
568 |
+
|
569 |
with gr.Column(scale=1):
|
570 |
with gr.Row():
|
571 |
combined_image = gr.Image(
|
|
|
597 |
queue=False
|
598 |
)
|
599 |
|
600 |
+
def update_controls(bg_prompt):
|
601 |
+
"""๋ฐฐ๊ฒฝ ํ๋กฌํํธ ์
๋ ฅ ์ฌ๋ถ์ ๋ฐ๋ผ ์ปจํธ๋กค ํ์ ์
๋ฐ์ดํธ"""
|
602 |
+
is_visible = bool(bg_prompt)
|
603 |
+
return [
|
604 |
+
gr.update(visible=is_visible), # aspect_ratio
|
605 |
+
gr.update(visible=is_visible), # object_controls
|
606 |
+
]
|
607 |
|
608 |
bg_prompt.change(
|
609 |
+
fn=update_controls,
|
610 |
inputs=bg_prompt,
|
611 |
+
outputs=[aspect_ratio, object_controls],
|
612 |
queue=False
|
613 |
)
|
614 |
|
615 |
process_btn.click(
|
616 |
fn=process_prompt,
|
617 |
+
inputs=[
|
618 |
+
input_image,
|
619 |
+
text_prompt,
|
620 |
+
bg_prompt,
|
621 |
+
aspect_ratio,
|
622 |
+
position,
|
623 |
+
scale_slider
|
624 |
+
],
|
625 |
outputs=[combined_image, extracted_image],
|
626 |
queue=True
|
627 |
)
|
628 |
|
629 |
+
|
630 |
+
demo.queue(max_size=10) # ํ ํฌ๊ธฐ ์ ํ
|
631 |
+
demo.launch(
|
632 |
+
server_name="0.0.0.0",
|
633 |
+
server_port=7860,
|
634 |
+
share=False,
|
635 |
+
max_threads=2 # ์ค๋ ๋ ์ ์ ํ
|
636 |
+
)
|