Spaces:
Runtime error
Runtime error
Create app-backup.py
Browse files- app-backup.py +418 -0
app-backup.py
ADDED
|
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tempfile
|
| 2 |
+
import time
|
| 3 |
+
from collections.abc import Sequence
|
| 4 |
+
from typing import Any, cast
|
| 5 |
+
import os
|
| 6 |
+
from huggingface_hub import login, hf_hub_download
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import numpy as np
|
| 10 |
+
import pillow_heif
|
| 11 |
+
import spaces
|
| 12 |
+
import torch
|
| 13 |
+
from gradio_image_annotation import image_annotator
|
| 14 |
+
from gradio_imageslider import ImageSlider
|
| 15 |
+
from PIL import Image
|
| 16 |
+
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
|
| 17 |
+
from refiners.fluxion.utils import no_grad
|
| 18 |
+
from refiners.solutions import BoxSegmenter
|
| 19 |
+
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
|
| 20 |
+
from diffusers import FluxPipeline
|
| 21 |
+
|
| 22 |
+
BoundingBox = tuple[int, int, int, int]
|
| 23 |
+
|
| 24 |
+
pillow_heif.register_heif_opener()
|
| 25 |
+
pillow_heif.register_avif_opener()
|
| 26 |
+
|
| 27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 28 |
+
|
| 29 |
+
# HF ํ ํฐ ์ค์
|
| 30 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 31 |
+
if HF_TOKEN is None:
|
| 32 |
+
raise ValueError("Please set the HF_TOKEN environment variable")
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
login(token=HF_TOKEN)
|
| 36 |
+
except Exception as e:
|
| 37 |
+
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
|
| 38 |
+
|
| 39 |
+
# ๋ชจ๋ธ ์ด๊ธฐํ
|
| 40 |
+
segmenter = BoxSegmenter(device="cpu")
|
| 41 |
+
segmenter.device = device
|
| 42 |
+
segmenter.model = segmenter.model.to(device=segmenter.device)
|
| 43 |
+
|
| 44 |
+
gd_model_path = "IDEA-Research/grounding-dino-base"
|
| 45 |
+
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
|
| 46 |
+
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
|
| 47 |
+
gd_model = gd_model.to(device=device)
|
| 48 |
+
assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
| 49 |
+
|
| 50 |
+
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
| 51 |
+
pipe = FluxPipeline.from_pretrained(
|
| 52 |
+
"black-forest-labs/FLUX.1-dev",
|
| 53 |
+
torch_dtype=torch.bfloat16,
|
| 54 |
+
use_auth_token=HF_TOKEN
|
| 55 |
+
)
|
| 56 |
+
pipe.load_lora_weights(
|
| 57 |
+
hf_hub_download(
|
| 58 |
+
"ByteDance/Hyper-SD",
|
| 59 |
+
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
|
| 60 |
+
use_auth_token=HF_TOKEN
|
| 61 |
+
)
|
| 62 |
+
)
|
| 63 |
+
pipe.fuse_lora(lora_scale=0.125)
|
| 64 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
| 65 |
+
|
| 66 |
+
class timer:
|
| 67 |
+
def __init__(self, method_name="timed process"):
|
| 68 |
+
self.method = method_name
|
| 69 |
+
def __enter__(self):
|
| 70 |
+
self.start = time.time()
|
| 71 |
+
print(f"{self.method} starts")
|
| 72 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 73 |
+
end = time.time()
|
| 74 |
+
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
| 75 |
+
|
| 76 |
+
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
|
| 77 |
+
if not bboxes:
|
| 78 |
+
return None
|
| 79 |
+
for bbox in bboxes:
|
| 80 |
+
assert len(bbox) == 4
|
| 81 |
+
assert all(isinstance(x, int) for x in bbox)
|
| 82 |
+
return (
|
| 83 |
+
min(bbox[0] for bbox in bboxes),
|
| 84 |
+
min(bbox[1] for bbox in bboxes),
|
| 85 |
+
max(bbox[2] for bbox in bboxes),
|
| 86 |
+
max(bbox[3] for bbox in bboxes),
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
|
| 90 |
+
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
|
| 91 |
+
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
|
| 92 |
+
|
| 93 |
+
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
|
| 94 |
+
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
|
| 95 |
+
with no_grad():
|
| 96 |
+
outputs = gd_model(**inputs)
|
| 97 |
+
width, height = img.size
|
| 98 |
+
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
|
| 99 |
+
outputs,
|
| 100 |
+
inputs["input_ids"],
|
| 101 |
+
target_sizes=[(height, width)],
|
| 102 |
+
)[0]
|
| 103 |
+
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
|
| 104 |
+
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
|
| 105 |
+
return bbox_union(bboxes.numpy().tolist())
|
| 106 |
+
|
| 107 |
+
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
|
| 108 |
+
assert img.size == mask_img.size
|
| 109 |
+
img = img.convert("RGB")
|
| 110 |
+
mask_img = mask_img.convert("L")
|
| 111 |
+
if defringe:
|
| 112 |
+
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
|
| 113 |
+
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
|
| 114 |
+
img = Image.fromarray((foreground * 255).astype("uint8"))
|
| 115 |
+
result = Image.new("RGBA", img.size)
|
| 116 |
+
result.paste(img, (0, 0), mask_img)
|
| 117 |
+
return result
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]:
|
| 121 |
+
"""์ด๋ฏธ์ง ํฌ๊ธฐ๋ฅผ 8์ ๋ฐฐ์๋ก ์กฐ์ ํ๋ ํจ์"""
|
| 122 |
+
new_width = ((width + 7) // 8) * 8
|
| 123 |
+
new_height = ((height + 7) // 8) * 8
|
| 124 |
+
return new_width, new_height
|
| 125 |
+
|
| 126 |
+
def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]:
|
| 127 |
+
"""์ ํ๋ ๋น์จ์ ๋ฐ๋ผ ์ด๋ฏธ์ง ํฌ๊ธฐ ๊ณ์ฐ"""
|
| 128 |
+
if aspect_ratio == "1:1":
|
| 129 |
+
return base_size, base_size
|
| 130 |
+
elif aspect_ratio == "16:9":
|
| 131 |
+
return base_size * 16 // 9, base_size
|
| 132 |
+
elif aspect_ratio == "9:16":
|
| 133 |
+
return base_size, base_size * 16 // 9
|
| 134 |
+
elif aspect_ratio == "4:3":
|
| 135 |
+
return base_size * 4 // 3, base_size
|
| 136 |
+
return base_size, base_size
|
| 137 |
+
|
| 138 |
+
def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
|
| 139 |
+
"""๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์์ฑ ํจ์"""
|
| 140 |
+
try:
|
| 141 |
+
# ์ ํ๋ ๋น์จ์ ๋ฐ๋ผ ํฌ๊ธฐ ๊ณ์ฐ
|
| 142 |
+
width, height = calculate_dimensions(aspect_ratio)
|
| 143 |
+
|
| 144 |
+
# 8์ ๋ฐฐ์๋ก ์กฐ์
|
| 145 |
+
width, height = adjust_size_to_multiple_of_8(width, height)
|
| 146 |
+
|
| 147 |
+
with timer("Background generation"):
|
| 148 |
+
image = pipe(
|
| 149 |
+
prompt=prompt,
|
| 150 |
+
width=width,
|
| 151 |
+
height=height,
|
| 152 |
+
num_inference_steps=8,
|
| 153 |
+
guidance_scale=4.0,
|
| 154 |
+
).images[0]
|
| 155 |
+
|
| 156 |
+
return image
|
| 157 |
+
except Exception as e:
|
| 158 |
+
raise gr.Error(f"Background generation failed: {str(e)}")
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def combine_with_background(foreground: Image.Image, background: Image.Image) -> Image.Image:
|
| 162 |
+
"""์ ๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํฉ์ฑ ํจ์"""
|
| 163 |
+
background = background.resize(foreground.size)
|
| 164 |
+
return Image.alpha_composite(background.convert('RGBA'), foreground)
|
| 165 |
+
|
| 166 |
+
@spaces.GPU
|
| 167 |
+
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
|
| 168 |
+
time_log: list[str] = []
|
| 169 |
+
if isinstance(prompt, str):
|
| 170 |
+
t0 = time.time()
|
| 171 |
+
bbox = gd_detect(img, prompt)
|
| 172 |
+
time_log.append(f"detect: {time.time() - t0}")
|
| 173 |
+
if not bbox:
|
| 174 |
+
print(time_log[0])
|
| 175 |
+
raise gr.Error("No object detected")
|
| 176 |
+
else:
|
| 177 |
+
bbox = prompt
|
| 178 |
+
t0 = time.time()
|
| 179 |
+
mask = segmenter(img, bbox)
|
| 180 |
+
time_log.append(f"segment: {time.time() - t0}")
|
| 181 |
+
return mask, bbox, time_log
|
| 182 |
+
|
| 183 |
+
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
|
| 184 |
+
try:
|
| 185 |
+
if img.width > 2048 or img.height > 2048:
|
| 186 |
+
orig_res = max(img.width, img.height)
|
| 187 |
+
img.thumbnail((2048, 2048))
|
| 188 |
+
if isinstance(prompt, tuple):
|
| 189 |
+
x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt)
|
| 190 |
+
prompt = (x0, y0, x1, y1)
|
| 191 |
+
|
| 192 |
+
mask, bbox, time_log = _gpu_process(img, prompt)
|
| 193 |
+
masked_alpha = apply_mask(img, mask, defringe=True)
|
| 194 |
+
|
| 195 |
+
if bg_prompt:
|
| 196 |
+
background = generate_background(bg_prompt, aspect_ratio)
|
| 197 |
+
combined = combine_with_background(masked_alpha, background)
|
| 198 |
+
else:
|
| 199 |
+
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
|
| 200 |
+
|
| 201 |
+
thresholded = mask.point(lambda p: 255 if p > 10 else 0)
|
| 202 |
+
bbox = thresholded.getbbox()
|
| 203 |
+
to_dl = masked_alpha.crop(bbox)
|
| 204 |
+
|
| 205 |
+
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
| 206 |
+
to_dl.save(temp, format="PNG")
|
| 207 |
+
temp.close()
|
| 208 |
+
|
| 209 |
+
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
|
| 210 |
+
|
| 211 |
+
except Exception as e:
|
| 212 |
+
raise gr.Error(f"Processing failed: {str(e)}")
|
| 213 |
+
|
| 214 |
+
def on_change_bbox(prompts: dict[str, Any] | None):
|
| 215 |
+
return gr.update(interactive=prompts is not None)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
|
| 219 |
+
return gr.update(interactive=bool(img and prompt))
|
| 220 |
+
|
| 221 |
+
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[Image.Image, Image.Image]:
|
| 222 |
+
try:
|
| 223 |
+
if img is None or prompt.strip() == "":
|
| 224 |
+
raise gr.Error("Please provide both image and prompt")
|
| 225 |
+
|
| 226 |
+
# Process the image
|
| 227 |
+
results, _ = _process(img, prompt, bg_prompt, aspect_ratio)
|
| 228 |
+
|
| 229 |
+
# ํฉ์ฑ๋ ์ด๋ฏธ์ง์ ์ถ์ถ๋ ์ด๋ฏธ์ง๋ง ๋ฐํ
|
| 230 |
+
return results[1], results[2]
|
| 231 |
+
except Exception as e:
|
| 232 |
+
raise gr.Error(str(e))
|
| 233 |
+
|
| 234 |
+
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
|
| 235 |
+
try:
|
| 236 |
+
if img is None or box_input.strip() == "":
|
| 237 |
+
raise gr.Error("Please provide both image and bounding box coordinates")
|
| 238 |
+
|
| 239 |
+
try:
|
| 240 |
+
coords = eval(box_input)
|
| 241 |
+
if not isinstance(coords, list) or len(coords) != 4:
|
| 242 |
+
raise ValueError("Invalid box format")
|
| 243 |
+
bbox = tuple(int(x) for x in coords)
|
| 244 |
+
except:
|
| 245 |
+
raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]")
|
| 246 |
+
|
| 247 |
+
# Process the image
|
| 248 |
+
results, _ = _process(img, bbox)
|
| 249 |
+
|
| 250 |
+
# ํฉ์ฑ๋ ์ด๋ฏธ์ง์ ์ถ์ถ๋ ์ด๋ฏธ์ง๋ง ๋ฐํ
|
| 251 |
+
return results[1], results[2]
|
| 252 |
+
except Exception as e:
|
| 253 |
+
raise gr.Error(str(e))
|
| 254 |
+
|
| 255 |
+
# Event handler functions ์์
|
| 256 |
+
def update_process_button(img, prompt):
|
| 257 |
+
return gr.update(
|
| 258 |
+
interactive=bool(img and prompt),
|
| 259 |
+
variant="primary" if bool(img and prompt) else "secondary"
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
def update_box_button(img, box_input):
|
| 263 |
+
try:
|
| 264 |
+
if img and box_input:
|
| 265 |
+
coords = eval(box_input)
|
| 266 |
+
if isinstance(coords, list) and len(coords) == 4:
|
| 267 |
+
return gr.update(interactive=True, variant="primary")
|
| 268 |
+
return gr.update(interactive=False, variant="secondary")
|
| 269 |
+
except:
|
| 270 |
+
return gr.update(interactive=False, variant="secondary")
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
# ๋งจ ์๋ถ๋ถ์ CSS ์ ์ ์ถ๊ฐ
|
| 274 |
+
css = """
|
| 275 |
+
footer {display: none}
|
| 276 |
+
.main-title {
|
| 277 |
+
text-align: center;
|
| 278 |
+
margin: 2em 0;
|
| 279 |
+
padding: 1em;
|
| 280 |
+
background: #f7f7f7;
|
| 281 |
+
border-radius: 10px;
|
| 282 |
+
}
|
| 283 |
+
.main-title h1 {
|
| 284 |
+
color: #2196F3;
|
| 285 |
+
font-size: 2.5em;
|
| 286 |
+
margin-bottom: 0.5em;
|
| 287 |
+
}
|
| 288 |
+
.main-title p {
|
| 289 |
+
color: #666;
|
| 290 |
+
font-size: 1.2em;
|
| 291 |
+
}
|
| 292 |
+
.container {
|
| 293 |
+
max-width: 1200px;
|
| 294 |
+
margin: auto;
|
| 295 |
+
padding: 20px;
|
| 296 |
+
}
|
| 297 |
+
.tabs {
|
| 298 |
+
margin-top: 1em;
|
| 299 |
+
}
|
| 300 |
+
.input-group {
|
| 301 |
+
background: white;
|
| 302 |
+
padding: 1em;
|
| 303 |
+
border-radius: 8px;
|
| 304 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 305 |
+
}
|
| 306 |
+
.output-group {
|
| 307 |
+
background: white;
|
| 308 |
+
padding: 1em;
|
| 309 |
+
border-radius: 8px;
|
| 310 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 311 |
+
}
|
| 312 |
+
button.primary {
|
| 313 |
+
background: #2196F3;
|
| 314 |
+
border: none;
|
| 315 |
+
color: white;
|
| 316 |
+
padding: 0.5em 1em;
|
| 317 |
+
border-radius: 4px;
|
| 318 |
+
cursor: pointer;
|
| 319 |
+
transition: background 0.3s ease;
|
| 320 |
+
}
|
| 321 |
+
button.primary:hover {
|
| 322 |
+
background: #1976D2;
|
| 323 |
+
}
|
| 324 |
+
"""
|
| 325 |
+
|
| 326 |
+
# UI ๋ถ๋ถ ์์
|
| 327 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
| 328 |
+
gr.HTML("""
|
| 329 |
+
<div class="main-title">
|
| 330 |
+
<h1>๐จ Image Object Extractor</h1>
|
| 331 |
+
<p>Extract objects from images using text prompts</p>
|
| 332 |
+
</div>
|
| 333 |
+
""")
|
| 334 |
+
|
| 335 |
+
with gr.Row():
|
| 336 |
+
with gr.Column(scale=1):
|
| 337 |
+
input_image = gr.Image(
|
| 338 |
+
type="pil",
|
| 339 |
+
label="Upload Image",
|
| 340 |
+
interactive=True
|
| 341 |
+
)
|
| 342 |
+
text_prompt = gr.Textbox(
|
| 343 |
+
label="Object to Extract",
|
| 344 |
+
placeholder="Enter what you want to extract...",
|
| 345 |
+
interactive=True
|
| 346 |
+
)
|
| 347 |
+
with gr.Row():
|
| 348 |
+
bg_prompt = gr.Textbox(
|
| 349 |
+
label="Background Prompt (optional)",
|
| 350 |
+
placeholder="Describe the background...",
|
| 351 |
+
interactive=True,
|
| 352 |
+
scale=3
|
| 353 |
+
)
|
| 354 |
+
aspect_ratio = gr.Dropdown(
|
| 355 |
+
choices=["1:1", "16:9", "9:16", "4:3"],
|
| 356 |
+
value="1:1",
|
| 357 |
+
label="Aspect Ratio",
|
| 358 |
+
interactive=True,
|
| 359 |
+
visible=True,
|
| 360 |
+
scale=1
|
| 361 |
+
)
|
| 362 |
+
process_btn = gr.Button(
|
| 363 |
+
"Process",
|
| 364 |
+
variant="primary",
|
| 365 |
+
interactive=False
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
with gr.Column(scale=1):
|
| 369 |
+
with gr.Row():
|
| 370 |
+
combined_image = gr.Image(
|
| 371 |
+
label="Combined Result",
|
| 372 |
+
show_download_button=True,
|
| 373 |
+
type="pil",
|
| 374 |
+
height=512
|
| 375 |
+
)
|
| 376 |
+
with gr.Row():
|
| 377 |
+
extracted_image = gr.Image(
|
| 378 |
+
label="Extracted Object",
|
| 379 |
+
show_download_button=True,
|
| 380 |
+
type="pil",
|
| 381 |
+
height=256
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
# Event bindings
|
| 385 |
+
input_image.change(
|
| 386 |
+
fn=update_process_button,
|
| 387 |
+
inputs=[input_image, text_prompt],
|
| 388 |
+
outputs=process_btn,
|
| 389 |
+
queue=False
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
text_prompt.change(
|
| 393 |
+
fn=update_process_button,
|
| 394 |
+
inputs=[input_image, text_prompt],
|
| 395 |
+
outputs=process_btn,
|
| 396 |
+
queue=False
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
# bg_prompt๊ฐ ๋น์ด์์ ๋ aspect_ratio๋ฅผ ๋นํ์ฑํํ๋ ํจ์
|
| 400 |
+
def update_aspect_ratio(bg_prompt):
|
| 401 |
+
return gr.update(visible=bool(bg_prompt))
|
| 402 |
+
|
| 403 |
+
bg_prompt.change(
|
| 404 |
+
fn=update_aspect_ratio,
|
| 405 |
+
inputs=bg_prompt,
|
| 406 |
+
outputs=aspect_ratio,
|
| 407 |
+
queue=False
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
process_btn.click(
|
| 411 |
+
fn=process_prompt,
|
| 412 |
+
inputs=[input_image, text_prompt, bg_prompt, aspect_ratio],
|
| 413 |
+
outputs=[combined_image, extracted_image],
|
| 414 |
+
queue=True
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
demo.queue(max_size=30, api_open=False)
|
| 418 |
+
demo.launch()
|