ginipick commited on
Commit
105afff
ยท
verified ยท
1 Parent(s): 9d4caea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -26
app.py CHANGED
@@ -92,13 +92,22 @@ gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_
92
  gd_model = gd_model.to(device=device)
93
  assert isinstance(gd_model, GroundingDinoForObjectDetection)
94
 
95
- # FLUX ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™”
96
  pipe = FluxPipeline.from_pretrained(
97
  "black-forest-labs/FLUX.1-dev",
98
  torch_dtype=torch.float16,
99
  use_auth_token=HF_TOKEN
100
  )
101
- pipe.enable_attention_slicing(slice_size="auto")
 
 
 
 
 
 
 
 
 
102
 
103
  # LoRA ๊ฐ€์ค‘์น˜ ๋กœ๋“œ
104
  pipe.load_lora_weights(
@@ -173,18 +182,22 @@ def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -
173
 
174
  def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]:
175
  """์„ ํƒ๋œ ๋น„์œจ์— ๋”ฐ๋ผ ์ด๋ฏธ์ง€ ํฌ๊ธฐ ๊ณ„์‚ฐ"""
176
- # ๊ธฐ๋ณธ ํฌ๊ธฐ๋ฅผ 512๋กœ ๊ณ ์ •ํ•˜๊ณ , ๋น„์œจ์— ๋”ฐ๋ผ ์กฐ์ •
177
  if aspect_ratio == "1:1":
178
  width = height = 512
179
  elif aspect_ratio == "16:9":
180
- width, height = 512, 288 # 16:9 ๋น„์œจ ์œ ์ง€ํ•˜๋ฉด์„œ ๋†’์ด ์กฐ์ •
181
  elif aspect_ratio == "9:16":
182
- width, height = 288, 512 # 9:16 ๋น„์œจ ์œ ์ง€ํ•˜๋ฉด์„œ ๋„ˆ๋น„ ์กฐ์ •
183
  elif aspect_ratio == "4:3":
184
- width, height = 512, 384 # 4:3 ๋น„์œจ ์œ ์ง€
185
  else:
186
  width = height = 512
187
 
 
 
 
 
188
  return width, height
189
 
190
  def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
@@ -196,40 +209,31 @@ def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
196
 
197
  with timer("Background generation"):
198
  try:
 
199
  with torch.inference_mode():
200
  image = pipe(
201
  prompt=prompt,
202
- width=width,
203
- height=height,
204
  num_inference_steps=8,
205
  guidance_scale=4.0,
206
  ).images[0]
 
 
 
 
207
  return image
 
208
  except Exception as e:
209
  print(f"Pipeline error: {str(e)}")
210
- # ์—๋Ÿฌ ๋ฐœ์ƒ ์‹œ ๊ธฐ๋ณธ ํฌ๊ธฐ๋กœ ์žฌ์‹œ๋„
211
- try:
212
- with torch.inference_mode():
213
- image = pipe(
214
- prompt=prompt,
215
- width=512,
216
- height=512,
217
- num_inference_steps=8,
218
- guidance_scale=4.0,
219
- ).images[0]
220
-
221
- # ์›ํ•˜๋Š” ํฌ๊ธฐ๋กœ ๋ฆฌ์‚ฌ์ด์ฆˆ
222
- if width != 512 or height != 512:
223
- image = image.resize((width, height), Image.LANCZOS)
224
- return image
225
- except Exception as e2:
226
- print(f"Fallback generation error: {str(e2)}")
227
- return Image.new('RGB', (width, height), 'white')
228
 
229
  except Exception as e:
230
  print(f"Background generation error: {str(e)}")
231
  return Image.new('RGB', (512, 512), 'white')
232
 
 
233
  def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]:
234
  """์ด๋ฏธ์ง€ ํฌ๊ธฐ๋ฅผ 8์˜ ๋ฐฐ์ˆ˜๋กœ ์กฐ์ •"""
235
  new_width = max(8, ((width + 7) // 8) * 8) # ์ตœ์†Œ 8ํ”ฝ์…€ ๋ณด์žฅ
 
92
  gd_model = gd_model.to(device=device)
93
  assert isinstance(gd_model, GroundingDinoForObjectDetection)
94
 
95
+ # ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™” ๋ถ€๋ถ„๋„ ์ˆ˜์ •
96
  pipe = FluxPipeline.from_pretrained(
97
  "black-forest-labs/FLUX.1-dev",
98
  torch_dtype=torch.float16,
99
  use_auth_token=HF_TOKEN
100
  )
101
+
102
+ # ๋ฉ”๋ชจ๋ฆฌ ๋ฐ ์„ฑ๋Šฅ ์ตœ์ ํ™” ์„ค์ •
103
+ pipe.enable_attention_slicing()
104
+ pipe.enable_vae_slicing()
105
+ pipe.enable_xformers_memory_efficient_attention() # xformers๊ฐ€ ์„ค์น˜๋˜์–ด ์žˆ๋‹ค๋ฉด
106
+
107
+ if torch.cuda.is_available():
108
+ pipe = pipe.to("cuda")
109
+ pipe.enable_model_cpu_offload() # ๋ฉ”๋ชจ๋ฆฌ ํšจ์œจ์„ ์œ„ํ•œ CPU ์˜คํ”„๋กœ๋“œ
110
+
111
 
112
  # LoRA ๊ฐ€์ค‘์น˜ ๋กœ๋“œ
113
  pipe.load_lora_weights(
 
182
 
183
  def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]:
184
  """์„ ํƒ๋œ ๋น„์œจ์— ๋”ฐ๋ผ ์ด๋ฏธ์ง€ ํฌ๊ธฐ ๊ณ„์‚ฐ"""
185
+ # FLUX ํŒŒ์ดํ”„๋ผ์ธ์ด ์ง€์›ํ•˜๋Š” ์•ˆ์ „ํ•œ ํฌ๊ธฐ ์‚ฌ์šฉ
186
  if aspect_ratio == "1:1":
187
  width = height = 512
188
  elif aspect_ratio == "16:9":
189
+ width, height = 576, 320 # 16:9์— ๊ฐ€๊นŒ์šด ์•ˆ์ „ํ•œ ํฌ๊ธฐ
190
  elif aspect_ratio == "9:16":
191
+ width, height = 320, 576 # 9:16์— ๊ฐ€๊นŒ์šด ์•ˆ์ „ํ•œ ํฌ๊ธฐ
192
  elif aspect_ratio == "4:3":
193
+ width, height = 512, 384 # 4:3์— ๊ฐ€๊นŒ์šด ์•ˆ์ „ํ•œ ํฌ๊ธฐ
194
  else:
195
  width = height = 512
196
 
197
+ # 8์˜ ๋ฐฐ์ˆ˜๋กœ ์กฐ์ •
198
+ width = (width // 8) * 8
199
+ height = (height // 8) * 8
200
+
201
  return width, height
202
 
203
  def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
 
209
 
210
  with timer("Background generation"):
211
  try:
212
+ # ๋จผ์ € 512x512๋กœ ์ƒ์„ฑ
213
  with torch.inference_mode():
214
  image = pipe(
215
  prompt=prompt,
216
+ width=512,
217
+ height=512,
218
  num_inference_steps=8,
219
  guidance_scale=4.0,
220
  ).images[0]
221
+
222
+ # ์›ํ•˜๋Š” ํฌ๊ธฐ๋กœ ๋ฆฌ์‚ฌ์ด์ฆˆ
223
+ if width != 512 or height != 512:
224
+ image = image.resize((width, height), Image.LANCZOS)
225
  return image
226
+
227
  except Exception as e:
228
  print(f"Pipeline error: {str(e)}")
229
+ # ์—๋Ÿฌ ๋ฐœ์ƒ ์‹œ ํฐ์ƒ‰ ๋ฐฐ๊ฒฝ ๋ฐ˜ํ™˜
230
+ return Image.new('RGB', (width, height), 'white')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
 
232
  except Exception as e:
233
  print(f"Background generation error: {str(e)}")
234
  return Image.new('RGB', (512, 512), 'white')
235
 
236
+
237
  def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]:
238
  """์ด๋ฏธ์ง€ ํฌ๊ธฐ๋ฅผ 8์˜ ๋ฐฐ์ˆ˜๋กœ ์กฐ์ •"""
239
  new_width = max(8, ((width + 7) // 8) * 8) # ์ตœ์†Œ 8ํ”ฝ์…€ ๋ณด์žฅ