canvas-studio / app.py
ginipick's picture
Update app.py
d922f5e verified
raw
history blame
26 kB
import tempfile
import time
from collections.abc import Sequence
from typing import Any, cast
import os
from huggingface_hub import login, hf_hub_download
import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
from diffusers import FluxPipeline
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import gc
import base64
# GPU ์„ค์ •
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # ๋ช…์‹œ์ ์œผ๋กœ cuda:0 ์ง€์ •
###--------------ZERO GPU ํ•„์ˆ˜/ ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ ๊ณตํ†ต --------------------###
def clear_memory():
gc.collect()
if torch.cuda.is_available():
try:
torch.cuda.empty_cache()
torch.cuda.synchronize()
except:
pass
###---------------------------------------------------------------
# GPU ์„ค์ •์„ try-except๋กœ ๊ฐ์‹ธ๊ธฐ
if torch.cuda.is_available():
try:
with torch.cuda.device(0):
torch.cuda.empty_cache()
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
except:
print("Warning: Could not configure CUDA settings")
# ๋ฒˆ์—ญ ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
model_name = "Helsinki-NLP/opus-mt-ko-en"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to('cpu')
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1)
def translate_to_english(text: str) -> str:
"""ํ•œ๊ธ€ ํ…์ŠคํŠธ๋ฅผ ์˜์–ด๋กœ ๋ฒˆ์—ญ"""
try:
if any(ord('๊ฐ€') <= ord(char) <= ord('ํžฃ') for char in text):
translated = translator(text, max_length=128)[0]['translation_text']
print(f"Translated '{text}' to '{translated}'")
return translated
return text
except Exception as e:
print(f"Translation error: {str(e)}")
return text
BoundingBox = tuple[int, int, int, int]
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
# HF ํ† ํฐ ์„ค์ •
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("Please set the HF_TOKEN environment variable")
try:
login(token=HF_TOKEN)
except Exception as e:
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
# ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)
gd_model_path = "IDEA-Research/grounding-dino-base"
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
gd_model = gd_model.to(device=device)
assert isinstance(gd_model, GroundingDinoForObjectDetection)
# FLUX ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™”
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.float16,
use_auth_token=HF_TOKEN
)
pipe.enable_attention_slicing(slice_size="auto")
# LoRA ๊ฐ€์ค‘์น˜ ๋กœ๋“œ
pipe.load_lora_weights(
hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
)
pipe.fuse_lora(lora_scale=0.125)
# GPU ์„ค์ •์„ try-except๋กœ ๊ฐ์‹ธ๊ธฐ
try:
if torch.cuda.is_available():
pipe = pipe.to("cuda:0") # ๋ช…์‹œ์ ์œผ๋กœ cuda:0 ์ง€์ •
except Exception as e:
print(f"Warning: Could not move pipeline to CUDA: {str(e)}")
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
if not bboxes:
return None
for bbox in bboxes:
assert len(bbox) == 4
assert all(isinstance(x, int) for x in bbox)
return (
min(bbox[0] for bbox in bboxes),
min(bbox[1] for bbox in bboxes),
max(bbox[2] for bbox in bboxes),
max(bbox[3] for bbox in bboxes),
)
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
with no_grad():
outputs = gd_model(**inputs)
width, height = img.size
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
outputs,
inputs["input_ids"],
target_sizes=[(height, width)],
)[0]
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
return bbox_union(bboxes.numpy().tolist())
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
assert img.size == mask_img.size
img = img.convert("RGB")
mask_img = mask_img.convert("L")
if defringe:
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
img = Image.fromarray((foreground * 255).astype("uint8"))
result = Image.new("RGBA", img.size)
result.paste(img, (0, 0), mask_img)
return result
def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]:
"""์ด๋ฏธ์ง€ ํฌ๊ธฐ๋ฅผ 8์˜ ๋ฐฐ์ˆ˜๋กœ ์กฐ์ •ํ•˜๋Š” ํ•จ์ˆ˜"""
new_width = ((width + 7) // 8) * 8
new_height = ((height + 7) // 8) * 8
return new_width, new_height
def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]:
"""์„ ํƒ๋œ ๋น„์œจ์— ๋”ฐ๋ผ ์ด๋ฏธ์ง€ ํฌ๊ธฐ ๊ณ„์‚ฐ"""
if aspect_ratio == "1:1":
width, height = base_size, base_size
elif aspect_ratio == "16:9":
width, height = base_size * 16 // 9, base_size
elif aspect_ratio == "9:16":
width, height = base_size, base_size * 16 // 9
elif aspect_ratio == "4:3":
width, height = base_size * 4 // 3, base_size
else:
width, height = base_size, base_size
# 8์˜ ๋ฐฐ์ˆ˜๋กœ ์กฐ์ •
return adjust_size_to_multiple_of_8(width, height)
def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
try:
# ์ด๋ฏธ์ง€ ํฌ๊ธฐ ๊ณ„์‚ฐ ๋ฐ 8์˜ ๋ฐฐ์ˆ˜๋กœ ์กฐ์ •
width, height = calculate_dimensions(aspect_ratio)
# ์ตœ๋Œ€ ํฌ๊ธฐ ์ œํ•œ ์ ์šฉ
max_size = 768
if width > max_size or height > max_size:
ratio = max_size / max(width, height)
width = int(width * ratio)
height = int(height * ratio)
# ๋‹ค์‹œ 8์˜ ๋ฐฐ์ˆ˜๋กœ ์กฐ์ •
width, height = adjust_size_to_multiple_of_8(width, height)
print(f"Generating background with size: {width}x{height}")
with timer("Background generation"):
try:
with torch.inference_mode():
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=8,
guidance_scale=4.0
).images[0]
except Exception as e:
print(f"Pipeline error: {str(e)}")
return Image.new('RGB', (width, height), 'white')
return image
except Exception as e:
print(f"Background generation error: {str(e)}")
return Image.new('RGB', (512, 512), 'white')
def create_position_grid():
return """
<div class="position-grid" style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; width: 150px; margin: auto;">
<button class="position-btn" data-pos="top-left">โ†–</button>
<button class="position-btn" data-pos="top-center">โ†‘</button>
<button class="position-btn" data-pos="top-right">โ†—</button>
<button class="position-btn" data-pos="middle-left">โ†</button>
<button class="position-btn" data-pos="middle-center">โ€ข</button>
<button class="position-btn" data-pos="middle-right">โ†’</button>
<button class="position-btn" data-pos="bottom-left">โ†™</button>
<button class="position-btn" data-pos="bottom-center" data-default="true">โ†“</button>
<button class="position-btn" data-pos="bottom-right">โ†˜</button>
</div>
"""
def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]:
"""์˜ค๋ธŒ์ ํŠธ์˜ ์œ„์น˜ ๊ณ„์‚ฐ"""
bg_width, bg_height = bg_size
obj_width, obj_height = obj_size
positions = {
"top-left": (0, 0),
"top-center": ((bg_width - obj_width) // 2, 0),
"top-right": (bg_width - obj_width, 0),
"middle-left": (0, (bg_height - obj_height) // 2),
"middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2),
"middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2),
"bottom-left": (0, bg_height - obj_height),
"bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height),
"bottom-right": (bg_width - obj_width, bg_height - obj_height)
}
return positions.get(position, positions["bottom-center"])
def resize_object(image: Image.Image, scale_percent: float) -> Image.Image:
"""์˜ค๋ธŒ์ ํŠธ ํฌ๊ธฐ ์กฐ์ •"""
width = int(image.width * scale_percent / 100)
height = int(image.height * scale_percent / 100)
return image.resize((width, height), Image.Resampling.LANCZOS)
def combine_with_background(foreground: Image.Image, background: Image.Image,
position: str = "bottom-center", scale_percent: float = 100) -> Image.Image:
"""์ „๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํ•ฉ์„ฑ ํ•จ์ˆ˜"""
# ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง€ ์ค€๋น„
result = background.convert('RGBA')
# ์˜ค๋ธŒ์ ํŠธ ํฌ๊ธฐ ์กฐ์ •
scaled_foreground = resize_object(foreground, scale_percent)
# ์˜ค๋ธŒ์ ํŠธ ์œ„์น˜ ๊ณ„์‚ฐ
x, y = calculate_object_position(position, result.size, scaled_foreground.size)
# ํ•ฉ์„ฑ
result.paste(scaled_foreground, (x, y), scaled_foreground)
return result
@spaces.GPU(duration=30)
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
try:
with torch.inference_mode():
if isinstance(prompt, str):
bbox = gd_detect(img, prompt)
if not bbox:
raise gr.Error("No object detected in image")
else:
bbox = prompt
mask = segmenter(img, bbox)
return mask, bbox, []
except Exception as e:
print(f"GPU process error: {str(e)}")
raise
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
try:
# ์ž…๋ ฅ ์ด๋ฏธ์ง€ ํฌ๊ธฐ ์ œํ•œ
max_size = 1024
if img.width > max_size or img.height > max_size:
ratio = max_size / max(img.width, img.height)
new_size = (int(img.width * ratio), int(img.height * ratio))
img = img.resize(new_size, Image.LANCZOS)
# CUDA ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ
if torch.cuda.is_available():
torch.cuda.empty_cache()
# ์ƒˆ๋กœ์šด autocast ๊ตฌ๋ฌธ ์‚ฌ์šฉ
with torch.amp.autocast('cuda', enabled=torch.cuda.is_available()):
mask, bbox, time_log = _gpu_process(img, prompt)
masked_alpha = apply_mask(img, mask, defringe=True)
if bg_prompt:
background = generate_background(bg_prompt, aspect_ratio)
combined = background
else:
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
clear_memory()
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp:
combined.save(temp.name)
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
except Exception as e:
clear_memory()
print(f"Processing error: {str(e)}")
raise gr.Error(f"Processing failed: {str(e)}")
def on_change_bbox(prompts: dict[str, Any] | None):
return gr.update(interactive=prompts is not None)
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
return gr.update(interactive=bool(img and prompt))
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None,
aspect_ratio: str = "1:1", position: str = "bottom-center",
scale_percent: float = 100) -> tuple[Image.Image, Image.Image]:
try:
if img is None or not prompt or prompt.isspace():
raise gr.Error("Please provide both image and prompt")
print(f"Processing with position: {position}, scale: {scale_percent}") # ๋””๋ฒ„๊น…์šฉ
# ์ž…๋ ฅ ์ด๋ฏธ์ง€ ํฌ๊ธฐ ์ œํ•œ
max_size = 1024
if img.width > max_size or img.height > max_size:
ratio = max_size / max(img.width, img.height)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
# ๋ฒˆ์—ญ ์ฒ˜๋ฆฌ
translated_prompt = translate_to_english(prompt)
translated_bg_prompt = translate_to_english(bg_prompt) if bg_prompt else None
# ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ
with torch.inference_mode():
results, _ = _process(img, translated_prompt, translated_bg_prompt, aspect_ratio)
if translated_bg_prompt:
try:
combined = combine_with_background(
foreground=results[2],
background=results[1],
position=position,
scale_percent=scale_percent # scale_slider๊ฐ€ ์•„๋‹Œ scale_percent ์‚ฌ์šฉ
)
return combined, results[2]
except Exception as e:
print(f"Background combination error: {e}")
return results[1], results[2]
return results[1], results[2]
except Exception as e:
print(f"Process error: {str(e)}")
raise gr.Error(str(e))
finally:
clear_memory()
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
try:
if img is None or box_input.strip() == "":
raise gr.Error("Please provide both image and bounding box coordinates")
try:
coords = eval(box_input)
if not isinstance(coords, list) or len(coords) != 4:
raise ValueError("Invalid box format")
bbox = tuple(int(x) for x in coords)
except:
raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]")
# Process the image
results, _ = _process(img, bbox)
# ํ•ฉ์„ฑ๋œ ์ด๋ฏธ์ง€์™€ ์ถ”์ถœ๋œ ์ด๋ฏธ์ง€๋งŒ ๋ฐ˜ํ™˜
return results[1], results[2]
except Exception as e:
raise gr.Error(str(e))
# Event handler functions ์ˆ˜์ •
def update_process_button(img, prompt):
return gr.update(
interactive=bool(img and prompt),
variant="primary" if bool(img and prompt) else "secondary"
)
def update_box_button(img, box_input):
try:
if img and box_input:
coords = eval(box_input)
if isinstance(coords, list) and len(coords) == 4:
return gr.update(interactive=True, variant="primary")
return gr.update(interactive=False, variant="secondary")
except:
return gr.update(interactive=False, variant="secondary")
# CSS ์ •์˜
css = """
footer {display: none}
.main-title {
text-align: center;
margin: 2em 0;
padding: 1em;
background: #f7f7f7;
border-radius: 10px;
}
.main-title h1 {
color: #2196F3;
font-size: 2.5em;
margin-bottom: 0.5em;
}
.main-title p {
color: #666;
font-size: 1.2em;
}
.container {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.tabs {
margin-top: 1em;
}
.input-group {
background: white;
padding: 1em;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.output-group {
background: white;
padding: 1em;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
button.primary {
background: #2196F3;
border: none;
color: white;
padding: 0.5em 1em;
border-radius: 4px;
cursor: pointer;
transition: background 0.3s ease;
}
button.primary:hover {
background: #1976D2;
}
.position-btn {
transition: all 0.3s ease;
}
.position-btn:hover {
background-color: #e3f2fd;
}
.position-btn.selected {
background-color: #2196F3;
color: white;
}
"""
def get_image_base64(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode()
# ์ด๋ฏธ์ง€๋ฅผ Base64๋กœ ๋ณ€ํ™˜
try:
example_img1 = get_image_base64("aa1.png")
example_img2 = get_image_base64("aa2.png")
example_img3 = get_image_base64("aa3.png")
except Exception as e:
print(f"Error loading example images: {e}")
example_img1 = example_img2 = example_img3 = ""
# HTML ํ…œํ”Œ๋ฆฟ ์ˆ˜์ •
example_html = f"""
<div style="margin-top: 50px; padding: 20px; background-color: #f8f9fa; border-radius: 10px;">
<h2 style="text-align: center; color: #2196F3; margin-bottom: 30px;">How It Works: Step by Step Guide</h2>
<div style="display: flex; justify-content: space-around; align-items: center; flex-wrap: wrap; gap: 20px;">
<div style="text-align: center; flex: 1; min-width: 250px; max-width: 300px;">
<img src="data:image/png;base64,{example_img1}"
style="width: 100%; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="color: #333; margin: 15px 0;">Step 1: Original Image</h3>
<p style="color: #666;">Upload your original image containing the object you want to extract.</p>
</div>
<div style="text-align: center; flex: 1; min-width: 250px; max-width: 300px;">
<img src="data:image/png;base64,{example_img2}"
style="width: 100%; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="color: #333; margin: 15px 0;">Step 2: Object Extraction</h3>
<p style="color: #666;">AI automatically detects and extracts the specified object.</p>
</div>
<div style="text-align: center; flex: 1; min-width: 250px; max-width: 300px;">
<img src="data:image/png;base64,{example_img3}"
style="width: 100%; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<h3 style="color: #333; margin: 15px 0;">Step 3: Final Result</h3>
<p style="color: #666;">The extracted object is placed on an AI-generated background.</p>
</div>
</div>
<div style="margin-top: 30px; text-align: center; padding: 20px; background-color: #e3f2fd; border-radius: 8px;">
<h4 style="color: #1976D2; margin-bottom: 10px;">Key Features:</h4>
<ul style="list-style: none; padding: 0;">
<li style="margin: 5px 0;">โœจ Advanced AI-powered object detection and extraction</li>
<li style="margin: 5px 0;">๐ŸŽจ Custom background generation with text prompts</li>
<li style="margin: 5px 0;">๐Ÿ”„ Flexible object positioning and sizing options</li>
<li style="margin: 5px 0;">๐Ÿ“ Multiple aspect ratio support for various use cases</li>
</ul>
</div>
</div>
"""
# UI ๊ตฌ์„ฑ
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML("""
<div class="main-title">
<h1>๐ŸŽจGiniGen Canvas</h1>
<p>AI Integrated Image Creator: Extract objects, generate backgrounds, and adjust ratios and positions to create complete images with AI.</p>
</div>
""")
# ์˜ˆ์ œ ์„น์…˜ ์ถ”๊ฐ€
gr.HTML(example_html)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
type="pil",
label="Upload Image",
interactive=True
)
text_prompt = gr.Textbox(
label="Object to Extract",
placeholder="Enter what you want to extract...",
interactive=True
)
with gr.Row():
bg_prompt = gr.Textbox(
label="Background Prompt (optional)",
placeholder="Describe the background...",
interactive=True,
scale=3
)
aspect_ratio = gr.Dropdown(
choices=["1:1", "16:9", "9:16", "4:3"],
value="1:1",
label="Aspect Ratio",
interactive=True,
visible=True,
scale=1
)
with gr.Row(visible=False) as object_controls:
with gr.Column(scale=1):
with gr.Row():
position = gr.State(value="bottom-center")
btn_top_left = gr.Button("โ†–")
btn_top_center = gr.Button("โ†‘")
btn_top_right = gr.Button("โ†—")
with gr.Row():
btn_middle_left = gr.Button("โ†")
btn_middle_center = gr.Button("โ€ข")
btn_middle_right = gr.Button("โ†’")
with gr.Row():
btn_bottom_left = gr.Button("โ†™")
btn_bottom_center = gr.Button("โ†“")
btn_bottom_right = gr.Button("โ†˜")
with gr.Column(scale=1):
scale_slider = gr.Slider(
minimum=10,
maximum=200,
value=100,
step=5,
label="Object Size (%)"
)
process_btn = gr.Button(
"Process",
variant="primary",
interactive=False
)
# ๊ฐ ๋ฒ„ํŠผ์— ๋Œ€ํ•œ ํด๋ฆญ ์ด๋ฒคํŠธ ์ฒ˜๋ฆฌ
def update_position(new_position):
return new_position
btn_top_left.click(fn=lambda: update_position("top-left"), outputs=position)
btn_top_center.click(fn=lambda: update_position("top-center"), outputs=position)
btn_top_right.click(fn=lambda: update_position("top-right"), outputs=position)
btn_middle_left.click(fn=lambda: update_position("middle-left"), outputs=position)
btn_middle_center.click(fn=lambda: update_position("middle-center"), outputs=position)
btn_middle_right.click(fn=lambda: update_position("middle-right"), outputs=position)
btn_bottom_left.click(fn=lambda: update_position("bottom-left"), outputs=position)
btn_bottom_center.click(fn=lambda: update_position("bottom-center"), outputs=position)
btn_bottom_right.click(fn=lambda: update_position("bottom-right"), outputs=position)
with gr.Column(scale=1):
with gr.Row():
combined_image = gr.Image(
label="Combined Result",
show_download_button=True,
type="pil",
height=512
)
with gr.Row():
extracted_image = gr.Image(
label="Extracted Object",
show_download_button=True,
type="pil",
height=256
)
# Event bindings
input_image.change(
fn=update_process_button,
inputs=[input_image, text_prompt],
outputs=process_btn,
queue=False
)
text_prompt.change(
fn=update_process_button,
inputs=[input_image, text_prompt],
outputs=process_btn,
queue=False
)
def update_controls(bg_prompt):
"""๋ฐฐ๊ฒฝ ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ ์—ฌ๋ถ€์— ๋”ฐ๋ผ ์ปจํŠธ๋กค ํ‘œ์‹œ ์—…๋ฐ์ดํŠธ"""
is_visible = bool(bg_prompt)
return [
gr.update(visible=is_visible), # aspect_ratio
gr.update(visible=is_visible), # object_controls
]
bg_prompt.change(
fn=update_controls,
inputs=bg_prompt,
outputs=[aspect_ratio, object_controls],
queue=False
)
process_btn.click(
fn=process_prompt,
inputs=[
input_image,
text_prompt,
bg_prompt,
aspect_ratio,
position,
scale_slider
],
outputs=[combined_image, extracted_image],
queue=True
)
demo.queue(max_size=5) # ํ ํฌ๊ธฐ ์ œํ•œ
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
max_threads=2) # ์Šค๋ ˆ๋“œ ์ˆ˜ ์ œํ•œ