Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -56,6 +56,13 @@ pipeline = wan.WanTI2V(
|
|
56 |
print("Pipeline initialized and ready.")
|
57 |
|
58 |
# --- Helper Functions ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def select_best_size_for_image(image, available_sizes):
|
60 |
"""Select the size option with aspect ratio closest to the input image."""
|
61 |
if image is None:
|
@@ -90,6 +97,23 @@ def handle_image_upload(image):
|
|
90 |
|
91 |
return gr.update(value=best_size)
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
def get_duration(image,
|
94 |
prompt,
|
95 |
size,
|
@@ -107,6 +131,14 @@ def get_duration(image,
|
|
107 |
else:
|
108 |
return 90
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
# --- 2. Gradio Inference Function ---
|
111 |
@spaces.GPU(duration=get_duration)
|
112 |
def generate_video(
|
@@ -121,9 +153,18 @@ def generate_video(
|
|
121 |
progress=gr.Progress(track_tqdm=True)
|
122 |
):
|
123 |
"""The main function to generate video, called by the Gradio interface."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
if seed == -1:
|
125 |
seed = random.randint(0, sys.maxsize)
|
126 |
|
|
|
|
|
127 |
input_image = None
|
128 |
if image is not None:
|
129 |
input_image = Image.fromarray(image).convert("RGB")
|
@@ -134,44 +175,110 @@ def generate_video(
|
|
134 |
# Calculate number of frames based on duration
|
135 |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
return video_path
|
162 |
|
163 |
|
164 |
# --- 3. Gradio Interface ---
|
165 |
-
css = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
|
168 |
-
gr.Markdown("
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
with gr.Row():
|
172 |
with gr.Column(scale=2):
|
173 |
image_input = gr.Image(type="numpy", label="Input Image (Optional)", elem_id="input_image")
|
174 |
-
prompt_input = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
duration_input = gr.Slider(
|
176 |
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
|
177 |
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1),
|
@@ -180,18 +287,57 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
|
|
180 |
label="Duration (seconds)",
|
181 |
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
|
182 |
)
|
183 |
-
size_input = gr.Dropdown(
|
|
|
|
|
|
|
|
|
|
|
184 |
with gr.Column(scale=2):
|
185 |
video_output = gr.Video(label="Generated Video", elem_id="output_video")
|
186 |
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
with gr.Accordion("Advanced Settings", open=False):
|
189 |
-
steps_input = gr.Slider(
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
run_button = gr.Button("Generate Video", variant="primary")
|
195 |
|
196 |
# Add image upload handler
|
197 |
image_input.upload(
|
@@ -206,12 +352,25 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
|
|
206 |
outputs=[size_input]
|
207 |
)
|
208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
|
210 |
gr.Examples(
|
211 |
examples=[
|
212 |
-
[example_image_path, "The cat removes the glasses from its eyes.", "1280*704", 1.5],
|
213 |
-
[None, "A cinematic shot of a boat sailing on
|
214 |
-
[None, "Drone footage flying over a futuristic city with flying cars.", "1280*704", 2.0],
|
|
|
|
|
215 |
],
|
216 |
inputs=[image_input, prompt_input, size_input, duration_input],
|
217 |
outputs=video_output,
|
|
|
56 |
print("Pipeline initialized and ready.")
|
57 |
|
58 |
# --- Helper Functions ---
|
59 |
+
def clear_gpu_memory():
|
60 |
+
"""Clear GPU memory more thoroughly"""
|
61 |
+
if torch.cuda.is_available():
|
62 |
+
torch.cuda.empty_cache()
|
63 |
+
torch.cuda.ipc_collect()
|
64 |
+
gc.collect()
|
65 |
+
|
66 |
def select_best_size_for_image(image, available_sizes):
|
67 |
"""Select the size option with aspect ratio closest to the input image."""
|
68 |
if image is None:
|
|
|
97 |
|
98 |
return gr.update(value=best_size)
|
99 |
|
100 |
+
def validate_inputs(image, prompt, duration_seconds):
|
101 |
+
"""Validate user inputs"""
|
102 |
+
errors = []
|
103 |
+
|
104 |
+
if not prompt or len(prompt.strip()) < 5:
|
105 |
+
errors.append("Prompt must be at least 5 characters long.")
|
106 |
+
|
107 |
+
if image is not None:
|
108 |
+
img = Image.fromarray(image)
|
109 |
+
if img.size[0] * img.size[1] > 4096 * 4096:
|
110 |
+
errors.append("Image size is too large (maximum 4096x4096).")
|
111 |
+
|
112 |
+
if duration_seconds > 5.0 and image is None:
|
113 |
+
errors.append("Videos longer than 5 seconds require an input image.")
|
114 |
+
|
115 |
+
return errors
|
116 |
+
|
117 |
def get_duration(image,
|
118 |
prompt,
|
119 |
size,
|
|
|
131 |
else:
|
132 |
return 90
|
133 |
|
134 |
+
def apply_template(template, current_prompt):
|
135 |
+
"""Apply prompt template"""
|
136 |
+
if "{subject}" in template:
|
137 |
+
# Extract the main subject from current prompt (simple heuristic)
|
138 |
+
subject = current_prompt.split(",")[0] if "," in current_prompt else current_prompt
|
139 |
+
return template.replace("{subject}", subject)
|
140 |
+
return template + " " + current_prompt
|
141 |
+
|
142 |
# --- 2. Gradio Inference Function ---
|
143 |
@spaces.GPU(duration=get_duration)
|
144 |
def generate_video(
|
|
|
153 |
progress=gr.Progress(track_tqdm=True)
|
154 |
):
|
155 |
"""The main function to generate video, called by the Gradio interface."""
|
156 |
+
# Validate inputs
|
157 |
+
errors = validate_inputs(image, prompt, duration_seconds)
|
158 |
+
if errors:
|
159 |
+
raise gr.Error("\n".join(errors))
|
160 |
+
|
161 |
+
progress(0, desc="Setting up...")
|
162 |
+
|
163 |
if seed == -1:
|
164 |
seed = random.randint(0, sys.maxsize)
|
165 |
|
166 |
+
progress(0.1, desc="Processing image...")
|
167 |
+
|
168 |
input_image = None
|
169 |
if image is not None:
|
170 |
input_image = Image.fromarray(image).convert("RGB")
|
|
|
175 |
# Calculate number of frames based on duration
|
176 |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
|
177 |
|
178 |
+
progress(0.2, desc="Generating video...")
|
179 |
+
|
180 |
+
try:
|
181 |
+
video_tensor = pipeline.generate(
|
182 |
+
input_prompt=prompt,
|
183 |
+
img=input_image, # Pass None for T2V, Image for I2V
|
184 |
+
size=SIZE_CONFIGS[size],
|
185 |
+
max_area=MAX_AREA_CONFIGS[size],
|
186 |
+
frame_num=num_frames, # Use calculated frames instead of cfg.frame_num
|
187 |
+
shift=shift,
|
188 |
+
sample_solver='unipc',
|
189 |
+
sampling_steps=int(sampling_steps),
|
190 |
+
guide_scale=guide_scale,
|
191 |
+
seed=seed,
|
192 |
+
offload_model=True
|
193 |
+
)
|
194 |
|
195 |
+
progress(0.9, desc="Saving video...")
|
196 |
+
|
197 |
+
# Save the video to a temporary file
|
198 |
+
video_path = cache_video(
|
199 |
+
tensor=video_tensor[None], # Add a batch dimension
|
200 |
+
save_file=None, # cache_video will create a temp file
|
201 |
+
fps=cfg.sample_fps,
|
202 |
+
normalize=True,
|
203 |
+
value_range=(-1, 1)
|
204 |
+
)
|
205 |
+
|
206 |
+
progress(1.0, desc="Complete!")
|
207 |
+
|
208 |
+
except torch.cuda.OutOfMemoryError:
|
209 |
+
clear_gpu_memory()
|
210 |
+
raise gr.Error("GPU out of memory. Please try with lower settings.")
|
211 |
+
except Exception as e:
|
212 |
+
raise gr.Error(f"Video generation failed: {str(e)}")
|
213 |
+
finally:
|
214 |
+
if 'video_tensor' in locals():
|
215 |
+
del video_tensor
|
216 |
+
clear_gpu_memory()
|
217 |
+
|
218 |
return video_path
|
219 |
|
220 |
|
221 |
# --- 3. Gradio Interface ---
|
222 |
+
css = """
|
223 |
+
.gradio-container {max-width: 1100px !important; margin: 0 auto}
|
224 |
+
#output_video {height: 500px;}
|
225 |
+
#input_image {height: 500px;}
|
226 |
+
.template-btn {margin: 2px !important;}
|
227 |
+
"""
|
228 |
+
|
229 |
+
# Default prompt with motion emphasis
|
230 |
+
DEFAULT_PROMPT = "Generate a video with smooth and natural movement. Objects should have visible motion while maintaining fluid transitions."
|
231 |
+
|
232 |
+
# Prompt templates
|
233 |
+
templates = {
|
234 |
+
"Cinematic": "cinematic shot of {subject}, professional lighting, smooth camera movement, 4k quality",
|
235 |
+
"Animation": "animated style {subject}, vibrant colors, fluid motion, dynamic movement",
|
236 |
+
"Nature": "nature documentary footage of {subject}, wildlife photography, natural movement",
|
237 |
+
"Slow Motion": "slow motion capture of {subject}, high speed camera, detailed motion",
|
238 |
+
"Action": "dynamic action shot of {subject}, fast paced movement, energetic motion"
|
239 |
+
}
|
240 |
|
241 |
with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
|
242 |
+
gr.Markdown("""
|
243 |
+
# Wan 2.2 TI2V Enhanced
|
244 |
+
|
245 |
+
Generate high quality videos using **Wan 2.2 5B Text-Image-to-Video model**
|
246 |
+
[[model]](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B), [[paper]](https://arxiv.org/abs/2503.20314)
|
247 |
+
|
248 |
+
### 💡 Tips for best results:
|
249 |
+
- 🖼️ Upload an image for better control over the video content
|
250 |
+
- ⏱️ Longer videos require more processing time
|
251 |
+
- 🎯 Be specific and descriptive in your prompts
|
252 |
+
- 🎬 Include motion-related keywords for dynamic videos
|
253 |
+
""")
|
254 |
|
255 |
with gr.Row():
|
256 |
with gr.Column(scale=2):
|
257 |
image_input = gr.Image(type="numpy", label="Input Image (Optional)", elem_id="input_image")
|
258 |
+
prompt_input = gr.Textbox(
|
259 |
+
label="Prompt",
|
260 |
+
value=DEFAULT_PROMPT,
|
261 |
+
lines=3,
|
262 |
+
placeholder="Describe the video you want to generate..."
|
263 |
+
)
|
264 |
+
|
265 |
+
# Prompt templates section
|
266 |
+
with gr.Accordion("Prompt Templates", open=False):
|
267 |
+
gr.Markdown("Click a template to apply it to your prompt:")
|
268 |
+
with gr.Row():
|
269 |
+
template_buttons = {}
|
270 |
+
for name, template in templates.items():
|
271 |
+
btn = gr.Button(name, size="sm", elem_classes=["template-btn"])
|
272 |
+
template_buttons[name] = (btn, template)
|
273 |
+
|
274 |
+
# Connect template buttons
|
275 |
+
for name, (btn, template) in template_buttons.items():
|
276 |
+
btn.click(
|
277 |
+
fn=lambda t=template, p=prompt_input: apply_template(t, p),
|
278 |
+
inputs=[prompt_input],
|
279 |
+
outputs=prompt_input
|
280 |
+
)
|
281 |
+
|
282 |
duration_input = gr.Slider(
|
283 |
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
|
284 |
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1),
|
|
|
287 |
label="Duration (seconds)",
|
288 |
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
|
289 |
)
|
290 |
+
size_input = gr.Dropdown(
|
291 |
+
label="Output Resolution",
|
292 |
+
choices=list(SUPPORTED_SIZES[TASK_NAME]),
|
293 |
+
value="704*1280"
|
294 |
+
)
|
295 |
+
|
296 |
with gr.Column(scale=2):
|
297 |
video_output = gr.Video(label="Generated Video", elem_id="output_video")
|
298 |
|
299 |
+
# Status indicators
|
300 |
+
with gr.Row():
|
301 |
+
status_text = gr.Textbox(
|
302 |
+
label="Status",
|
303 |
+
value="Ready",
|
304 |
+
interactive=False,
|
305 |
+
max_lines=1
|
306 |
+
)
|
307 |
+
|
308 |
with gr.Accordion("Advanced Settings", open=False):
|
309 |
+
steps_input = gr.Slider(
|
310 |
+
label="Sampling Steps",
|
311 |
+
minimum=10,
|
312 |
+
maximum=50,
|
313 |
+
value=38,
|
314 |
+
step=1,
|
315 |
+
info="Higher values = better quality but slower"
|
316 |
+
)
|
317 |
+
scale_input = gr.Slider(
|
318 |
+
label="Guidance Scale",
|
319 |
+
minimum=1.0,
|
320 |
+
maximum=10.0,
|
321 |
+
value=cfg.sample_guide_scale,
|
322 |
+
step=0.1,
|
323 |
+
info="Higher values = closer to prompt but less creative"
|
324 |
+
)
|
325 |
+
shift_input = gr.Slider(
|
326 |
+
label="Sample Shift",
|
327 |
+
minimum=1.0,
|
328 |
+
maximum=20.0,
|
329 |
+
value=cfg.sample_shift,
|
330 |
+
step=0.1,
|
331 |
+
info="Affects the sampling process dynamics"
|
332 |
+
)
|
333 |
+
seed_input = gr.Number(
|
334 |
+
label="Seed (-1 for random)",
|
335 |
+
value=-1,
|
336 |
+
precision=0,
|
337 |
+
info="Use same seed for reproducible results"
|
338 |
+
)
|
339 |
|
340 |
+
run_button = gr.Button("Generate Video", variant="primary", size="lg")
|
341 |
|
342 |
# Add image upload handler
|
343 |
image_input.upload(
|
|
|
352 |
outputs=[size_input]
|
353 |
)
|
354 |
|
355 |
+
# Update status when generating
|
356 |
+
def update_status_and_generate(*args):
|
357 |
+
status_text.value = "Generating..."
|
358 |
+
try:
|
359 |
+
result = generate_video(*args)
|
360 |
+
status_text.value = "Complete!"
|
361 |
+
return result
|
362 |
+
except Exception as e:
|
363 |
+
status_text.value = "Error occurred"
|
364 |
+
raise e
|
365 |
+
|
366 |
example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
|
367 |
gr.Examples(
|
368 |
examples=[
|
369 |
+
[example_image_path, "The cat removes the glasses from its eyes with smooth motion.", "1280*704", 1.5],
|
370 |
+
[None, "A cinematic shot of a boat sailing on calm waves with gentle rocking motion at sunset.", "1280*704", 2.0],
|
371 |
+
[None, "Drone footage flying smoothly over a futuristic city with flying cars in continuous motion.", "1280*704", 2.0],
|
372 |
+
[None, DEFAULT_PROMPT + " A waterfall cascading down rocks.", "704*1280", 2.5],
|
373 |
+
[None, DEFAULT_PROMPT + " Birds flying across a cloudy sky.", "1280*704", 3.0],
|
374 |
],
|
375 |
inputs=[image_input, prompt_input, size_input, duration_input],
|
376 |
outputs=video_output,
|