Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,705 Bytes
309fd4d b9186cf 80df978 bec3822 ba7cb71 46b3f7e ba7cb71 46b3f7e ba7cb71 46b3f7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import os
import sys
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
#import subprocess
#subprocess.run('pip install flash-attn==2.7.4.post1 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# wan2.2-main/gradio_ti2v.py
import gradio as gr
import torch
from huggingface_hub import snapshot_download
from PIL import Image
import random
import numpy as np
import spaces
import wan
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from wan.utils.utils import cache_video
# --- 1. Global Setup and Model Loading ---
print("Starting Gradio App for Wan 2.2 TI2V-5B...")
# Download model snapshots from Hugging Face Hub
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
print(f"Downloading/loading checkpoints for {repo_id}...")
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
print(f"Using checkpoints from {ckpt_dir}")
# Load the model configuration
TASK_NAME = 'ti2v-5B'
cfg = WAN_CONFIGS[TASK_NAME]
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 121
# Instantiate the pipeline in the global scope
print("Initializing WanTI2V pipeline...")
device = "cuda" if torch.cuda.is_available() else "cpu"
device_id = 0 if torch.cuda.is_available() else -1
pipeline = wan.WanTI2V(
config=cfg,
checkpoint_dir=ckpt_dir,
device_id=device_id,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_sp=False,
t5_cpu=False,
init_on_cpu=True,
convert_model_dtype=True,
)
print("Pipeline initialized and ready.")
# --- 2. Gradio Inference Function ---
@spaces.GPU(duration=80)
def generate_video(
image,
prompt,
size,
duration_seconds,
sampling_steps,
guide_scale,
shift,
seed,
progress=gr.Progress(track_tqdm=True)
):
"""The main function to generate video, called by the Gradio interface."""
if seed == -1:
seed = random.randint(0, sys.maxsize)
input_image = Image.fromarray(image).convert("RGB") if image is not None else None
# Calculate number of frames based on duration
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
video_tensor = pipeline.generate(
input_prompt=prompt,
img=input_image, # Pass None for T2V, Image for I2V
size=SIZE_CONFIGS[size],
max_area=MAX_AREA_CONFIGS[size],
frame_num=num_frames, # Use calculated frames instead of cfg.frame_num
shift=shift,
sample_solver='unipc',
sampling_steps=int(sampling_steps),
guide_scale=guide_scale,
seed=seed,
offload_model=True
)
# Save the video to a temporary file
video_path = cache_video(
tensor=video_tensor[None], # Add a batch dimension
save_file=None, # cache_video will create a temp file
fps=cfg.sample_fps,
normalize=True,
value_range=(-1, 1)
)
return video_path
# --- 3. Gradio Interface ---
css = ".gradio-container {max-width: 1100px !important} #output_video {height: 500px;} #input_image {height: 500px;}"
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown("# Wan 2.2 Text/Image-to-Video Demo (ti2v-5B)")
gr.Markdown("Generate a video from a text prompt. Optionally, provide an initial image to guide the generation (Image-to-Video).")
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(type="numpy", label="Input Image (Optional)", elem_id="input_image")
prompt_input = gr.Textbox(label="Prompt", value="A beautiful waterfall in a lush jungle, cinematic.", lines=3)
duration_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1),
step=0.1,
value=2.0,
label="Duration (seconds)",
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
size_input = gr.Dropdown(label="Output Resolution", choices=list(SUPPORTED_SIZES[TASK_NAME]), value="704*1280")
with gr.Column(scale=2):
video_output = gr.Video(label="Generated Video", elem_id="output_video")
with gr.Accordion("Advanced Settings", open=False):
steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=70, value=35, step=1)
scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
run_button = gr.Button("Generate Video", variant="primary")
example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
gr.Examples(
examples=[
[None, "A cinematic shot of a boat sailing on a calm sea at sunset.", "1280*704", 2.0],
[example_image_path, "The cat slowly blinks its eyes.", "704*1280", 1.5],
[None, "Drone footage flying over a futuristic city with flying cars.", "1280*704", 3.0],
],
inputs=[image_input, prompt_input, size_input, duration_input],
outputs=video_output,
fn=generate_video,
cache_examples=False,
)
run_button.click(
fn=generate_video,
inputs=[image_input, prompt_input, size_input, duration_input, steps_input, scale_input, shift_input, seed_input],
outputs=video_output
)
if __name__ == "__main__":
demo.launch() |