File size: 5,705 Bytes
309fd4d
b9186cf
 
 
80df978
 
bec3822
ba7cb71
 
 
 
 
 
 
46b3f7e
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46b3f7e
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46b3f7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import sys
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))

#import subprocess
#subprocess.run('pip install flash-attn==2.7.4.post1 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# wan2.2-main/gradio_ti2v.py
import gradio as gr
import torch
from huggingface_hub import snapshot_download
from PIL import Image
import random
import numpy as np
import spaces

import wan
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from wan.utils.utils import cache_video

# --- 1. Global Setup and Model Loading ---

print("Starting Gradio App for Wan 2.2 TI2V-5B...")

# Download model snapshots from Hugging Face Hub
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
print(f"Downloading/loading checkpoints for {repo_id}...")
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
print(f"Using checkpoints from {ckpt_dir}")

# Load the model configuration
TASK_NAME = 'ti2v-5B'
cfg = WAN_CONFIGS[TASK_NAME]
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 121 

# Instantiate the pipeline in the global scope
print("Initializing WanTI2V pipeline...")
device = "cuda" if torch.cuda.is_available() else "cpu"
device_id = 0 if torch.cuda.is_available() else -1
pipeline = wan.WanTI2V(
    config=cfg,
    checkpoint_dir=ckpt_dir,
    device_id=device_id,
    rank=0,
    t5_fsdp=False,
    dit_fsdp=False,
    use_sp=False,
    t5_cpu=False,
    init_on_cpu=True,
    convert_model_dtype=True,
)
print("Pipeline initialized and ready.")


# --- 2. Gradio Inference Function ---
@spaces.GPU(duration=80)
def generate_video(
    image,
    prompt,
    size,
    duration_seconds,
    sampling_steps,
    guide_scale,
    shift,
    seed,
    progress=gr.Progress(track_tqdm=True)
):
    """The main function to generate video, called by the Gradio interface."""
    if seed == -1:
        seed = random.randint(0, sys.maxsize)

    input_image = Image.fromarray(image).convert("RGB") if image is not None else None
    
    # Calculate number of frames based on duration
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)

    video_tensor = pipeline.generate(
        input_prompt=prompt,
        img=input_image,  # Pass None for T2V, Image for I2V
        size=SIZE_CONFIGS[size],
        max_area=MAX_AREA_CONFIGS[size],
        frame_num=num_frames,  # Use calculated frames instead of cfg.frame_num
        shift=shift,
        sample_solver='unipc',
        sampling_steps=int(sampling_steps),
        guide_scale=guide_scale,
        seed=seed,
        offload_model=True
    )

    # Save the video to a temporary file
    video_path = cache_video(
        tensor=video_tensor[None],  # Add a batch dimension
        save_file=None,  # cache_video will create a temp file
        fps=cfg.sample_fps,
        normalize=True,
        value_range=(-1, 1)
    )

    return video_path


# --- 3. Gradio Interface ---
css = ".gradio-container {max-width: 1100px !important} #output_video {height: 500px;} #input_image {height: 500px;}"

with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    gr.Markdown("# Wan 2.2 Text/Image-to-Video Demo (ti2v-5B)")
    gr.Markdown("Generate a video from a text prompt. Optionally, provide an initial image to guide the generation (Image-to-Video).")

    with gr.Row():
        with gr.Column(scale=2):
            image_input = gr.Image(type="numpy", label="Input Image (Optional)", elem_id="input_image")
            prompt_input = gr.Textbox(label="Prompt", value="A beautiful waterfall in a lush jungle, cinematic.", lines=3)
            duration_input = gr.Slider(
                minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1), 
                maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1), 
                step=0.1, 
                value=2.0, 
                label="Duration (seconds)", 
                info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
            )
            size_input = gr.Dropdown(label="Output Resolution", choices=list(SUPPORTED_SIZES[TASK_NAME]), value="704*1280")
        with gr.Column(scale=2):
            video_output = gr.Video(label="Generated Video", elem_id="output_video")
            

            with gr.Accordion("Advanced Settings", open=False):
                steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=70, value=35, step=1)
                scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
                shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
                seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)

            run_button = gr.Button("Generate Video", variant="primary")
            

    example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
    gr.Examples(
        examples=[
            [None, "A cinematic shot of a boat sailing on a calm sea at sunset.", "1280*704", 2.0],
            [example_image_path, "The cat slowly blinks its eyes.", "704*1280", 1.5],
            [None, "Drone footage flying over a futuristic city with flying cars.", "1280*704", 3.0],
        ],
        inputs=[image_input, prompt_input, size_input, duration_input],
        outputs=video_output,
        fn=generate_video,
        cache_examples=False,
    )

    run_button.click(
        fn=generate_video,
        inputs=[image_input, prompt_input, size_input, duration_input, steps_input, scale_input, shift_input, seed_input],
        outputs=video_output
    )

if __name__ == "__main__":
    demo.launch()