Spaces:
Runtime error
Runtime error
| import os | |
| import re | |
| import time | |
| from dataclasses import dataclass | |
| from glob import iglob | |
| import torch | |
| from fire import Fire | |
| from transformers import pipeline | |
| from flux.modules.image_embedders import ReduxImageEncoder | |
| from flux.sampling import denoise, get_noise, get_schedule, prepare_redux, unpack | |
| from flux.util import configs, load_ae, load_clip, load_flow_model, load_t5, save_image | |
| class SamplingOptions: | |
| prompt: str | |
| width: int | |
| height: int | |
| num_steps: int | |
| guidance: float | |
| seed: int | None | |
| img_cond_path: str | |
| def parse_prompt(options: SamplingOptions) -> SamplingOptions | None: | |
| user_question = "Write /h for help, /q to quit and leave empty to repeat):\n" | |
| usage = ( | |
| "Usage: Leave this field empty to do nothing " | |
| "or write a command starting with a slash:\n" | |
| "- '/w <width>' will set the width of the generated image\n" | |
| "- '/h <height>' will set the height of the generated image\n" | |
| "- '/s <seed>' sets the next seed\n" | |
| "- '/g <guidance>' sets the guidance (flux-dev only)\n" | |
| "- '/n <steps>' sets the number of steps\n" | |
| "- '/q' to quit" | |
| ) | |
| while (prompt := input(user_question)).startswith("/"): | |
| if prompt.startswith("/w"): | |
| if prompt.count(" ") != 1: | |
| print(f"Got invalid command '{prompt}'\n{usage}") | |
| continue | |
| _, width = prompt.split() | |
| options.width = 16 * (int(width) // 16) | |
| print( | |
| f"Setting resolution to {options.width} x {options.height} " | |
| f"({options.height *options.width/1e6:.2f}MP)" | |
| ) | |
| elif prompt.startswith("/h"): | |
| if prompt.count(" ") != 1: | |
| print(f"Got invalid command '{prompt}'\n{usage}") | |
| continue | |
| _, height = prompt.split() | |
| options.height = 16 * (int(height) // 16) | |
| print( | |
| f"Setting resolution to {options.width} x {options.height} " | |
| f"({options.height *options.width/1e6:.2f}MP)" | |
| ) | |
| elif prompt.startswith("/g"): | |
| if prompt.count(" ") != 1: | |
| print(f"Got invalid command '{prompt}'\n{usage}") | |
| continue | |
| _, guidance = prompt.split() | |
| options.guidance = float(guidance) | |
| print(f"Setting guidance to {options.guidance}") | |
| elif prompt.startswith("/s"): | |
| if prompt.count(" ") != 1: | |
| print(f"Got invalid command '{prompt}'\n{usage}") | |
| continue | |
| _, seed = prompt.split() | |
| options.seed = int(seed) | |
| print(f"Setting seed to {options.seed}") | |
| elif prompt.startswith("/n"): | |
| if prompt.count(" ") != 1: | |
| print(f"Got invalid command '{prompt}'\n{usage}") | |
| continue | |
| _, steps = prompt.split() | |
| options.num_steps = int(steps) | |
| print(f"Setting number of steps to {options.num_steps}") | |
| elif prompt.startswith("/q"): | |
| print("Quitting") | |
| return None | |
| else: | |
| if not prompt.startswith("/h"): | |
| print(f"Got invalid command '{prompt}'\n{usage}") | |
| print(usage) | |
| return options | |
| def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None: | |
| if options is None: | |
| return None | |
| user_question = "Next conditioning image (write /h for help, /q to quit and leave empty to repeat):\n" | |
| usage = ( | |
| "Usage: Either write your prompt directly, leave this field empty " | |
| "to repeat the conditioning image or write a command starting with a slash:\n" | |
| "- '/q' to quit" | |
| ) | |
| while True: | |
| img_cond_path = input(user_question) | |
| if img_cond_path.startswith("/"): | |
| if img_cond_path.startswith("/q"): | |
| print("Quitting") | |
| return None | |
| else: | |
| if not img_cond_path.startswith("/h"): | |
| print(f"Got invalid command '{img_cond_path}'\n{usage}") | |
| print(usage) | |
| continue | |
| if img_cond_path == "": | |
| break | |
| if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith( | |
| (".jpg", ".jpeg", ".png", ".webp") | |
| ): | |
| print(f"File '{img_cond_path}' does not exist or is not a valid image file") | |
| continue | |
| options.img_cond_path = img_cond_path | |
| break | |
| return options | |
| def main( | |
| name: str = "flux-dev", | |
| width: int = 1360, | |
| height: int = 768, | |
| seed: int | None = None, | |
| device: str = "cuda" if torch.cuda.is_available() else "cpu", | |
| num_steps: int | None = None, | |
| loop: bool = False, | |
| guidance: float = 2.5, | |
| offload: bool = False, | |
| output_dir: str = "output", | |
| add_sampling_metadata: bool = True, | |
| img_cond_path: str = "assets/robot.webp", | |
| ): | |
| """ | |
| Sample the flux model. Either interactively (set `--loop`) or run for a | |
| single image. | |
| Args: | |
| name: Name of the model to load | |
| height: height of the sample in pixels (should be a multiple of 16) | |
| width: width of the sample in pixels (should be a multiple of 16) | |
| seed: Set a seed for sampling | |
| output_name: where to save the output image, `{idx}` will be replaced | |
| by the index of the sample | |
| prompt: Prompt used for sampling | |
| device: Pytorch device | |
| num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled) | |
| loop: start an interactive session and sample multiple times | |
| guidance: guidance value used for guidance distillation | |
| add_sampling_metadata: Add the prompt to the image Exif metadata | |
| img_cond_path: path to conditioning image (jpeg/png/webp) | |
| """ | |
| nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device) | |
| if name not in configs: | |
| available = ", ".join(configs.keys()) | |
| raise ValueError(f"Got unknown model name: {name}, chose from {available}") | |
| torch_device = torch.device(device) | |
| if num_steps is None: | |
| num_steps = 4 if name == "flux-schnell" else 50 | |
| output_name = os.path.join(output_dir, "img_{idx}.jpg") | |
| if not os.path.exists(output_dir): | |
| os.makedirs(output_dir) | |
| idx = 0 | |
| else: | |
| fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)] | |
| if len(fns) > 0: | |
| idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1 | |
| else: | |
| idx = 0 | |
| # init all components | |
| t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512) | |
| clip = load_clip(torch_device) | |
| model = load_flow_model(name, device="cpu" if offload else torch_device) | |
| ae = load_ae(name, device="cpu" if offload else torch_device) | |
| img_embedder = ReduxImageEncoder(torch_device) | |
| rng = torch.Generator(device="cpu") | |
| prompt = "" | |
| opts = SamplingOptions( | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| num_steps=num_steps, | |
| guidance=guidance, | |
| seed=seed, | |
| img_cond_path=img_cond_path, | |
| ) | |
| if loop: | |
| opts = parse_prompt(opts) | |
| opts = parse_img_cond_path(opts) | |
| while opts is not None: | |
| if opts.seed is None: | |
| opts.seed = rng.seed() | |
| print(f"Generating with seed {opts.seed}:\n{opts.prompt}") | |
| t0 = time.perf_counter() | |
| # prepare input | |
| x = get_noise( | |
| 1, | |
| opts.height, | |
| opts.width, | |
| device=torch_device, | |
| dtype=torch.bfloat16, | |
| seed=opts.seed, | |
| ) | |
| opts.seed = None | |
| if offload: | |
| ae = ae.cpu() | |
| torch.cuda.empty_cache() | |
| t5, clip = t5.to(torch_device), clip.to(torch_device) | |
| inp = prepare_redux( | |
| t5, | |
| clip, | |
| x, | |
| prompt=opts.prompt, | |
| encoder=img_embedder, | |
| img_cond_path=opts.img_cond_path, | |
| ) | |
| timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell")) | |
| # offload TEs to CPU, load model to gpu | |
| if offload: | |
| t5, clip = t5.cpu(), clip.cpu() | |
| torch.cuda.empty_cache() | |
| model = model.to(torch_device) | |
| # denoise initial noise | |
| x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance) | |
| # offload model, load autoencoder to gpu | |
| if offload: | |
| model.cpu() | |
| torch.cuda.empty_cache() | |
| ae.decoder.to(x.device) | |
| # decode latents to pixel space | |
| x = unpack(x.float(), opts.height, opts.width) | |
| with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16): | |
| x = ae.decode(x) | |
| if torch.cuda.is_available(): | |
| torch.cuda.synchronize() | |
| t1 = time.perf_counter() | |
| print(f"Done in {t1 - t0:.1f}s") | |
| idx = save_image(nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt) | |
| if loop: | |
| print("-" * 80) | |
| opts = parse_prompt(opts) | |
| opts = parse_img_cond_path(opts) | |
| else: | |
| opts = None | |
| def app(): | |
| Fire(main) | |
| if __name__ == "__main__": | |
| app() | |