Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,431 +1,23 @@ | |
| 1 | 
            -
            # Create src directory structure
         | 
| 2 | 
            -
            import os
         | 
| 3 | 
            -
            import sys
         | 
| 4 | 
            -
             | 
| 5 | 
            -
            print("Starting NAG Video Demo application...")
         | 
| 6 | 
            -
             | 
| 7 | 
            -
            # Add current directory to Python path
         | 
| 8 | 
            -
            try:
         | 
| 9 | 
            -
                current_dir = os.path.dirname(os.path.abspath(__file__))
         | 
| 10 | 
            -
            except:
         | 
| 11 | 
            -
                current_dir = os.getcwd()
         | 
| 12 | 
            -
                
         | 
| 13 | 
            -
            sys.path.insert(0, current_dir)
         | 
| 14 | 
            -
            print(f"Added {current_dir} to Python path")
         | 
| 15 | 
            -
             | 
| 16 | 
            -
            os.makedirs("src", exist_ok=True)
         | 
| 17 | 
            -
             | 
| 18 | 
            -
            # Install required packages
         | 
| 19 | 
            -
            os.system("pip install safetensors")
         | 
| 20 | 
            -
             | 
| 21 | 
            -
            # Create __init__.py
         | 
| 22 | 
            -
            with open("src/__init__.py", "w") as f:
         | 
| 23 | 
            -
                f.write("")
         | 
| 24 | 
            -
                
         | 
| 25 | 
            -
            print("Creating NAG transformer module...")
         | 
| 26 | 
            -
             | 
| 27 | 
            -
            # Create transformer_wan_nag.py
         | 
| 28 | 
            -
            with open("src/transformer_wan_nag.py", "w") as f:
         | 
| 29 | 
            -
                f.write('''
         | 
| 30 | 
            -
            import torch
         | 
| 31 | 
            -
            import torch.nn as nn
         | 
| 32 | 
            -
            from typing import Optional, Dict, Any
         | 
| 33 | 
            -
            import torch.nn.functional as F
         | 
| 34 | 
            -
             | 
| 35 | 
            -
            class NagWanTransformer3DModel(nn.Module):
         | 
| 36 | 
            -
                """NAG-enhanced Transformer for video generation (simplified demo)"""
         | 
| 37 | 
            -
                
         | 
| 38 | 
            -
                def __init__(
         | 
| 39 | 
            -
                    self,
         | 
| 40 | 
            -
                    in_channels: int = 4,
         | 
| 41 | 
            -
                    out_channels: int = 4,
         | 
| 42 | 
            -
                    hidden_size: int = 64,
         | 
| 43 | 
            -
                    num_layers: int = 1,
         | 
| 44 | 
            -
                    num_heads: int = 4,
         | 
| 45 | 
            -
                ):
         | 
| 46 | 
            -
                    super().__init__()
         | 
| 47 | 
            -
                    self.in_channels = in_channels
         | 
| 48 | 
            -
                    self.out_channels = out_channels
         | 
| 49 | 
            -
                    self.hidden_size = hidden_size
         | 
| 50 | 
            -
                    self.training = False
         | 
| 51 | 
            -
                    self._dtype = torch.float32  # Add dtype attribute
         | 
| 52 | 
            -
                    
         | 
| 53 | 
            -
                    # Dummy config for compatibility
         | 
| 54 | 
            -
                    self.config = type('Config', (), {
         | 
| 55 | 
            -
                        'in_channels': in_channels,
         | 
| 56 | 
            -
                        'out_channels': out_channels,
         | 
| 57 | 
            -
                        'hidden_size': hidden_size,
         | 
| 58 | 
            -
                        'num_attention_heads': num_heads,
         | 
| 59 | 
            -
                        'attention_head_dim': hidden_size // num_heads,
         | 
| 60 | 
            -
                    })()
         | 
| 61 | 
            -
                    
         | 
| 62 | 
            -
                    # Simple conv layers for demo
         | 
| 63 | 
            -
                    self.conv_in = nn.Conv3d(in_channels, hidden_size, kernel_size=3, padding=1)
         | 
| 64 | 
            -
                    self.conv_mid = nn.Conv3d(hidden_size, hidden_size, kernel_size=3, padding=1)
         | 
| 65 | 
            -
                    self.conv_out = nn.Conv3d(hidden_size, out_channels, kernel_size=3, padding=1)
         | 
| 66 | 
            -
                    
         | 
| 67 | 
            -
                    # Time embedding
         | 
| 68 | 
            -
                    self.time_embed = nn.Sequential(
         | 
| 69 | 
            -
                        nn.Linear(1, hidden_size),
         | 
| 70 | 
            -
                        nn.SiLU(),
         | 
| 71 | 
            -
                        nn.Linear(hidden_size, hidden_size),
         | 
| 72 | 
            -
                    )
         | 
| 73 | 
            -
                
         | 
| 74 | 
            -
                @property
         | 
| 75 | 
            -
                def dtype(self):
         | 
| 76 | 
            -
                    """Return the dtype of the model"""
         | 
| 77 | 
            -
                    return self._dtype
         | 
| 78 | 
            -
                
         | 
| 79 | 
            -
                @dtype.setter
         | 
| 80 | 
            -
                def dtype(self, value):
         | 
| 81 | 
            -
                    """Set the dtype of the model"""
         | 
| 82 | 
            -
                    self._dtype = value
         | 
| 83 | 
            -
                
         | 
| 84 | 
            -
                def to(self, *args, **kwargs):
         | 
| 85 | 
            -
                    """Override to method to handle dtype"""
         | 
| 86 | 
            -
                    result = super().to(*args, **kwargs)
         | 
| 87 | 
            -
                    # Update dtype if moving to a specific dtype
         | 
| 88 | 
            -
                    for arg in args:
         | 
| 89 | 
            -
                        if isinstance(arg, torch.dtype):
         | 
| 90 | 
            -
                            self._dtype = arg
         | 
| 91 | 
            -
                    if 'dtype' in kwargs:
         | 
| 92 | 
            -
                        self._dtype = kwargs['dtype']
         | 
| 93 | 
            -
                    return result
         | 
| 94 | 
            -
                    
         | 
| 95 | 
            -
                @staticmethod
         | 
| 96 | 
            -
                def attn_processors():
         | 
| 97 | 
            -
                    return {}
         | 
| 98 | 
            -
                
         | 
| 99 | 
            -
                @staticmethod  
         | 
| 100 | 
            -
                def set_attn_processor(processor):
         | 
| 101 | 
            -
                    pass
         | 
| 102 | 
            -
                    
         | 
| 103 | 
            -
                def forward(
         | 
| 104 | 
            -
                    self, 
         | 
| 105 | 
            -
                    hidden_states: torch.Tensor,
         | 
| 106 | 
            -
                    timestep: Optional[torch.Tensor] = None,
         | 
| 107 | 
            -
                    encoder_hidden_states: Optional[torch.Tensor] = None,
         | 
| 108 | 
            -
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 109 | 
            -
                    **kwargs
         | 
| 110 | 
            -
                ):
         | 
| 111 | 
            -
                    # Simple forward pass for demo
         | 
| 112 | 
            -
                    batch_size = hidden_states.shape[0]
         | 
| 113 | 
            -
                    
         | 
| 114 | 
            -
                    # Time embedding
         | 
| 115 | 
            -
                    if timestep is not None:
         | 
| 116 | 
            -
                        # Ensure timestep is the right shape
         | 
| 117 | 
            -
                        if timestep.ndim == 0:
         | 
| 118 | 
            -
                            timestep = timestep.unsqueeze(0)
         | 
| 119 | 
            -
                        if timestep.shape[0] != batch_size:
         | 
| 120 | 
            -
                            timestep = timestep.repeat(batch_size)
         | 
| 121 | 
            -
                        
         | 
| 122 | 
            -
                        # Normalize timestep to [0, 1]
         | 
| 123 | 
            -
                        t_emb = timestep.float() / 1000.0
         | 
| 124 | 
            -
                        t_emb = t_emb.view(-1, 1)
         | 
| 125 | 
            -
                        t_emb = self.time_embed(t_emb)
         | 
| 126 | 
            -
                        
         | 
| 127 | 
            -
                        # Reshape for broadcasting
         | 
| 128 | 
            -
                        t_emb = t_emb.view(batch_size, -1, 1, 1, 1)
         | 
| 129 | 
            -
                    
         | 
| 130 | 
            -
                    # Simple convolutions
         | 
| 131 | 
            -
                    h = self.conv_in(hidden_states)
         | 
| 132 | 
            -
                    
         | 
| 133 | 
            -
                    # Add time embedding if available
         | 
| 134 | 
            -
                    if timestep is not None:
         | 
| 135 | 
            -
                        h = h + t_emb
         | 
| 136 | 
            -
                    
         | 
| 137 | 
            -
                    h = F.silu(h)
         | 
| 138 | 
            -
                    h = self.conv_mid(h)
         | 
| 139 | 
            -
                    h = F.silu(h)
         | 
| 140 | 
            -
                    h = self.conv_out(h)
         | 
| 141 | 
            -
                    
         | 
| 142 | 
            -
                    # Add residual connection
         | 
| 143 | 
            -
                    h = h + hidden_states
         | 
| 144 | 
            -
                    
         | 
| 145 | 
            -
                    return h
         | 
| 146 | 
            -
            ''')
         | 
| 147 | 
            -
             | 
| 148 | 
            -
            print("Creating NAG pipeline module...")
         | 
| 149 | 
            -
             | 
| 150 | 
            -
            # Create pipeline_wan_nag.py
         | 
| 151 | 
            -
            with open("src/pipeline_wan_nag.py", "w") as f:
         | 
| 152 | 
            -
                f.write('''
         | 
| 153 | 
            -
            import torch
         | 
| 154 | 
            -
            import torch.nn.functional as F
         | 
| 155 | 
            -
            from typing import List, Optional, Union, Tuple, Callable, Dict, Any
         | 
| 156 | 
            -
            from diffusers import DiffusionPipeline
         | 
| 157 | 
            -
            from diffusers.utils import logging, export_to_video
         | 
| 158 | 
            -
            from diffusers.schedulers import KarrasDiffusionSchedulers
         | 
| 159 | 
            -
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline
         | 
| 160 | 
            -
            from transformers import CLIPTextModel, CLIPTokenizer
         | 
| 161 | 
            -
            import numpy as np
         | 
| 162 | 
            -
             | 
| 163 | 
            -
            logger = logging.get_logger(__name__)
         | 
| 164 | 
            -
             | 
| 165 | 
            -
            class NAGWanPipeline(DiffusionPipeline):
         | 
| 166 | 
            -
                """NAG-enhanced pipeline for video generation"""
         | 
| 167 | 
            -
                
         | 
| 168 | 
            -
                def __init__(
         | 
| 169 | 
            -
                    self,
         | 
| 170 | 
            -
                    vae,
         | 
| 171 | 
            -
                    text_encoder,
         | 
| 172 | 
            -
                    tokenizer,
         | 
| 173 | 
            -
                    transformer,
         | 
| 174 | 
            -
                    scheduler,
         | 
| 175 | 
            -
                ):
         | 
| 176 | 
            -
                    super().__init__()
         | 
| 177 | 
            -
                    self.register_modules(
         | 
| 178 | 
            -
                        vae=vae,
         | 
| 179 | 
            -
                        text_encoder=text_encoder,
         | 
| 180 | 
            -
                        tokenizer=tokenizer,
         | 
| 181 | 
            -
                        transformer=transformer,
         | 
| 182 | 
            -
                        scheduler=scheduler,
         | 
| 183 | 
            -
                    )
         | 
| 184 | 
            -
                    # Set vae scale factor
         | 
| 185 | 
            -
                    if hasattr(self.vae, 'config') and hasattr(self.vae.config, 'block_out_channels'):
         | 
| 186 | 
            -
                        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
         | 
| 187 | 
            -
                    else:
         | 
| 188 | 
            -
                        self.vae_scale_factor = 8  # Default value for most VAEs
         | 
| 189 | 
            -
                    
         | 
| 190 | 
            -
                @classmethod
         | 
| 191 | 
            -
                def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
         | 
| 192 | 
            -
                    """Load pipeline from pretrained model"""
         | 
| 193 | 
            -
                    vae = kwargs.pop("vae", None)
         | 
| 194 | 
            -
                    transformer = kwargs.pop("transformer", None)
         | 
| 195 | 
            -
                    torch_dtype = kwargs.pop("torch_dtype", torch.float32)
         | 
| 196 | 
            -
                    
         | 
| 197 | 
            -
                    # Load text encoder and tokenizer
         | 
| 198 | 
            -
                    text_encoder = CLIPTextModel.from_pretrained(
         | 
| 199 | 
            -
                        pretrained_model_name_or_path,
         | 
| 200 | 
            -
                        subfolder="text_encoder",
         | 
| 201 | 
            -
                        torch_dtype=torch_dtype
         | 
| 202 | 
            -
                    )
         | 
| 203 | 
            -
                    tokenizer = CLIPTokenizer.from_pretrained(
         | 
| 204 | 
            -
                        pretrained_model_name_or_path,
         | 
| 205 | 
            -
                        subfolder="tokenizer"
         | 
| 206 | 
            -
                    )
         | 
| 207 | 
            -
                    
         | 
| 208 | 
            -
                    # Load scheduler
         | 
| 209 | 
            -
                    from diffusers import UniPCMultistepScheduler
         | 
| 210 | 
            -
                    scheduler = UniPCMultistepScheduler.from_pretrained(
         | 
| 211 | 
            -
                        pretrained_model_name_or_path,
         | 
| 212 | 
            -
                        subfolder="scheduler"
         | 
| 213 | 
            -
                    )
         | 
| 214 | 
            -
                    
         | 
| 215 | 
            -
                    return cls(
         | 
| 216 | 
            -
                        vae=vae,
         | 
| 217 | 
            -
                        text_encoder=text_encoder,
         | 
| 218 | 
            -
                        tokenizer=tokenizer,
         | 
| 219 | 
            -
                        transformer=transformer,
         | 
| 220 | 
            -
                        scheduler=scheduler,
         | 
| 221 | 
            -
                    )
         | 
| 222 | 
            -
                
         | 
| 223 | 
            -
                def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt=None):
         | 
| 224 | 
            -
                    """Encode text prompt to embeddings"""
         | 
| 225 | 
            -
                    batch_size = len(prompt) if isinstance(prompt, list) else 1
         | 
| 226 | 
            -
                    
         | 
| 227 | 
            -
                    text_inputs = self.tokenizer(
         | 
| 228 | 
            -
                        prompt,
         | 
| 229 | 
            -
                        padding="max_length",
         | 
| 230 | 
            -
                        max_length=self.tokenizer.model_max_length,
         | 
| 231 | 
            -
                        truncation=True,
         | 
| 232 | 
            -
                        return_tensors="pt",
         | 
| 233 | 
            -
                    )
         | 
| 234 | 
            -
                    text_input_ids = text_inputs.input_ids
         | 
| 235 | 
            -
                    text_embeddings = self.text_encoder(text_input_ids.to(device))[0]
         | 
| 236 | 
            -
                    
         | 
| 237 | 
            -
                    if do_classifier_free_guidance:
         | 
| 238 | 
            -
                        uncond_tokens = [""] * batch_size if negative_prompt is None else negative_prompt
         | 
| 239 | 
            -
                        uncond_input = self.tokenizer(
         | 
| 240 | 
            -
                            uncond_tokens,
         | 
| 241 | 
            -
                            padding="max_length",
         | 
| 242 | 
            -
                            max_length=self.tokenizer.model_max_length,
         | 
| 243 | 
            -
                            truncation=True,
         | 
| 244 | 
            -
                            return_tensors="pt",
         | 
| 245 | 
            -
                        )
         | 
| 246 | 
            -
                        uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
         | 
| 247 | 
            -
                        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
         | 
| 248 | 
            -
                        
         | 
| 249 | 
            -
                    return text_embeddings
         | 
| 250 | 
            -
                
         | 
| 251 | 
            -
                @torch.no_grad()
         | 
| 252 | 
            -
                def __call__(
         | 
| 253 | 
            -
                    self,
         | 
| 254 | 
            -
                    prompt: Union[str, List[str]] = None,
         | 
| 255 | 
            -
                    nag_negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 256 | 
            -
                    nag_scale: float = 0.0,
         | 
| 257 | 
            -
                    nag_tau: float = 3.5,
         | 
| 258 | 
            -
                    nag_alpha: float = 0.5,
         | 
| 259 | 
            -
                    height: Optional[int] = 512,
         | 
| 260 | 
            -
                    width: Optional[int] = 512,
         | 
| 261 | 
            -
                    num_frames: int = 16,
         | 
| 262 | 
            -
                    num_inference_steps: int = 50,
         | 
| 263 | 
            -
                    guidance_scale: float = 7.5,
         | 
| 264 | 
            -
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 265 | 
            -
                    eta: float = 0.0,
         | 
| 266 | 
            -
                    generator: Optional[torch.Generator] = None,
         | 
| 267 | 
            -
                    latents: Optional[torch.FloatTensor] = None,
         | 
| 268 | 
            -
                    output_type: Optional[str] = "pil",
         | 
| 269 | 
            -
                    return_dict: bool = True,
         | 
| 270 | 
            -
                    callback: Optional[Callable] = None,
         | 
| 271 | 
            -
                    callback_steps: int = 1,
         | 
| 272 | 
            -
                    **kwargs,
         | 
| 273 | 
            -
                ):
         | 
| 274 | 
            -
                    # Use NAG negative prompt if provided
         | 
| 275 | 
            -
                    if nag_negative_prompt is not None:
         | 
| 276 | 
            -
                        negative_prompt = nag_negative_prompt
         | 
| 277 | 
            -
                        
         | 
| 278 | 
            -
                    # Setup
         | 
| 279 | 
            -
                    batch_size = 1 if isinstance(prompt, str) else len(prompt)
         | 
| 280 | 
            -
                    device = self._execution_device
         | 
| 281 | 
            -
                    do_classifier_free_guidance = guidance_scale > 1.0
         | 
| 282 | 
            -
                    
         | 
| 283 | 
            -
                    # Encode prompt
         | 
| 284 | 
            -
                    text_embeddings = self._encode_prompt(
         | 
| 285 | 
            -
                        prompt, device, do_classifier_free_guidance, negative_prompt
         | 
| 286 | 
            -
                    )
         | 
| 287 | 
            -
                    
         | 
| 288 | 
            -
                    # Prepare latents
         | 
| 289 | 
            -
                    if hasattr(self.vae.config, 'latent_channels'):
         | 
| 290 | 
            -
                        num_channels_latents = self.vae.config.latent_channels
         | 
| 291 | 
            -
                    else:
         | 
| 292 | 
            -
                        num_channels_latents = 4  # Default for most VAEs
         | 
| 293 | 
            -
                    shape = (
         | 
| 294 | 
            -
                        batch_size,
         | 
| 295 | 
            -
                        num_channels_latents,
         | 
| 296 | 
            -
                        num_frames,
         | 
| 297 | 
            -
                        height // self.vae_scale_factor,
         | 
| 298 | 
            -
                        width // self.vae_scale_factor,
         | 
| 299 | 
            -
                    )
         | 
| 300 | 
            -
                    
         | 
| 301 | 
            -
                    if latents is None:
         | 
| 302 | 
            -
                        latents = torch.randn(
         | 
| 303 | 
            -
                            shape,
         | 
| 304 | 
            -
                            generator=generator,
         | 
| 305 | 
            -
                            device=device,
         | 
| 306 | 
            -
                            dtype=text_embeddings.dtype,
         | 
| 307 | 
            -
                        )
         | 
| 308 | 
            -
                    latents = latents * self.scheduler.init_noise_sigma
         | 
| 309 | 
            -
                    
         | 
| 310 | 
            -
                    # Set timesteps
         | 
| 311 | 
            -
                    self.scheduler.set_timesteps(num_inference_steps, device=device)
         | 
| 312 | 
            -
                    timesteps = self.scheduler.timesteps
         | 
| 313 | 
            -
                    
         | 
| 314 | 
            -
                    # Denoising loop with NAG
         | 
| 315 | 
            -
                    for i, t in enumerate(timesteps):
         | 
| 316 | 
            -
                        # Expand for classifier free guidance
         | 
| 317 | 
            -
                        latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
         | 
| 318 | 
            -
                        latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         | 
| 319 | 
            -
                        
         | 
| 320 | 
            -
                        # Predict noise residual
         | 
| 321 | 
            -
                        noise_pred = self.transformer(
         | 
| 322 | 
            -
                            latent_model_input,
         | 
| 323 | 
            -
                            timestep=t,
         | 
| 324 | 
            -
                            encoder_hidden_states=text_embeddings,
         | 
| 325 | 
            -
                        )
         | 
| 326 | 
            -
                        
         | 
| 327 | 
            -
                        # Apply NAG
         | 
| 328 | 
            -
                        if nag_scale > 0:
         | 
| 329 | 
            -
                            # Compute attention-based guidance
         | 
| 330 | 
            -
                            b, c, f, h, w = noise_pred.shape
         | 
| 331 | 
            -
                            noise_flat = noise_pred.view(b, c, -1)
         | 
| 332 | 
            -
                            
         | 
| 333 | 
            -
                            # Normalize and compute attention
         | 
| 334 | 
            -
                            noise_norm = F.normalize(noise_flat, dim=-1)
         | 
| 335 | 
            -
                            attention = F.softmax(noise_norm * nag_tau, dim=-1)
         | 
| 336 | 
            -
                            
         | 
| 337 | 
            -
                            # Apply guidance
         | 
| 338 | 
            -
                            guidance = attention.mean(dim=-1, keepdim=True) * nag_alpha
         | 
| 339 | 
            -
                            guidance = guidance.unsqueeze(-1).unsqueeze(-1)
         | 
| 340 | 
            -
                            noise_pred = noise_pred + nag_scale * guidance * noise_pred
         | 
| 341 | 
            -
                        
         | 
| 342 | 
            -
                        # Classifier free guidance
         | 
| 343 | 
            -
                        if do_classifier_free_guidance:
         | 
| 344 | 
            -
                            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 345 | 
            -
                            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
         | 
| 346 | 
            -
                        
         | 
| 347 | 
            -
                        # Compute previous noisy sample
         | 
| 348 | 
            -
                        latents = self.scheduler.step(noise_pred, t, latents, eta=eta, generator=generator).prev_sample
         | 
| 349 | 
            -
                        
         | 
| 350 | 
            -
                        # Callback
         | 
| 351 | 
            -
                        if callback is not None and i % callback_steps == 0:
         | 
| 352 | 
            -
                            callback(i, t, latents)
         | 
| 353 | 
            -
                    
         | 
| 354 | 
            -
                    # Decode latents
         | 
| 355 | 
            -
                    if hasattr(self.vae.config, 'scaling_factor'):
         | 
| 356 | 
            -
                        latents = 1 / self.vae.config.scaling_factor * latents
         | 
| 357 | 
            -
                    else:
         | 
| 358 | 
            -
                        latents = 1 / 0.18215 * latents  # Default SD scaling factor
         | 
| 359 | 
            -
                    video = self.vae.decode(latents).sample
         | 
| 360 | 
            -
                    video = (video / 2 + 0.5).clamp(0, 1)
         | 
| 361 | 
            -
                    
         | 
| 362 | 
            -
                    # Convert to output format
         | 
| 363 | 
            -
                    video = video.cpu().float().numpy()
         | 
| 364 | 
            -
                    video = (video * 255).round().astype("uint8")
         | 
| 365 | 
            -
                    video = video.transpose(0, 2, 3, 4, 1)
         | 
| 366 | 
            -
                    
         | 
| 367 | 
            -
                    frames = []
         | 
| 368 | 
            -
                    for batch_idx in range(video.shape[0]):
         | 
| 369 | 
            -
                        batch_frames = [video[batch_idx, i] for i in range(video.shape[1])]
         | 
| 370 | 
            -
                        frames.append(batch_frames)
         | 
| 371 | 
            -
                        
         | 
| 372 | 
            -
                    if not return_dict:
         | 
| 373 | 
            -
                        return (frames,)
         | 
| 374 | 
            -
                        
         | 
| 375 | 
            -
                    return type('PipelineOutput', (), {'frames': frames})()
         | 
| 376 | 
            -
            ''')
         | 
| 377 | 
            -
             | 
| 378 | 
            -
            print("NAG modules created successfully!")
         | 
| 379 | 
            -
             | 
| 380 | 
            -
            # Ensure files are written and synced
         | 
| 381 | 
            -
            import time
         | 
| 382 | 
            -
            time.sleep(2)  # Give more time for file writes
         | 
| 383 | 
            -
             | 
| 384 | 
            -
            # Verify files exist
         | 
| 385 | 
            -
            if not os.path.exists("src/transformer_wan_nag.py"):
         | 
| 386 | 
            -
                raise RuntimeError("transformer_wan_nag.py not created")
         | 
| 387 | 
            -
            if not os.path.exists("src/pipeline_wan_nag.py"):
         | 
| 388 | 
            -
                raise RuntimeError("pipeline_wan_nag.py not created")
         | 
| 389 | 
            -
             | 
| 390 | 
            -
            print("Files verified, importing modules...")
         | 
| 391 | 
            -
             | 
| 392 | 
            -
            # Now import and run the main application
         | 
| 393 | 
             
            import types
         | 
| 394 | 
             
            import random
         | 
| 395 | 
             
            import spaces
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 396 | 
             
            import torch
         | 
| 397 | 
            -
            import torch.nn as nn
         | 
| 398 | 
             
            import numpy as np
         | 
| 399 | 
            -
             | 
|  | |
| 400 | 
             
            from diffusers.utils import export_to_video
         | 
|  | |
| 401 | 
             
            import gradio as gr
         | 
| 402 | 
             
            import tempfile
         | 
| 403 | 
             
            from huggingface_hub import hf_hub_download
         | 
| 404 | 
            -
            import logging
         | 
| 405 | 
            -
            import gc
         | 
| 406 | 
            -
             | 
| 407 | 
            -
            # Ensure src files are created
         | 
| 408 | 
            -
            import time
         | 
| 409 | 
            -
            time.sleep(1)  # Give a moment for file writes to complete
         | 
| 410 |  | 
| 411 | 
            -
             | 
| 412 | 
            -
             | 
| 413 | 
            -
                from src.pipeline_wan_nag import NAGWanPipeline
         | 
| 414 | 
            -
                from src.transformer_wan_nag import NagWanTransformer3DModel
         | 
| 415 | 
            -
                print("Successfully imported NAG modules")
         | 
| 416 | 
            -
            except Exception as e:
         | 
| 417 | 
            -
                print(f"Error importing NAG modules: {e}")
         | 
| 418 | 
            -
                print("Attempting to recreate modules...")
         | 
| 419 | 
            -
                # Wait a bit and try again
         | 
| 420 | 
            -
                import time
         | 
| 421 | 
            -
                time.sleep(3)
         | 
| 422 | 
            -
                try:
         | 
| 423 | 
            -
                    from src.pipeline_wan_nag import NAGWanPipeline
         | 
| 424 | 
            -
                    from src.transformer_wan_nag import NagWanTransformer3DModel
         | 
| 425 | 
            -
                    print("Successfully imported NAG modules on second attempt")
         | 
| 426 | 
            -
                except:
         | 
| 427 | 
            -
                    print("Failed to import modules. Please restart the application.")
         | 
| 428 | 
            -
                    sys.exit(1)
         | 
| 429 |  | 
| 430 | 
             
            # MMAudio imports
         | 
| 431 | 
             
            try:
         | 
| @@ -434,217 +26,209 @@ except ImportError: | |
| 434 | 
             
                os.system("pip install -e .")
         | 
| 435 | 
             
                import mmaudio
         | 
| 436 |  | 
| 437 | 
            -
             | 
| 438 | 
            -
             | 
| 439 | 
            -
            os.environ['HF_HUB_CACHE'] = '/tmp/hub'
         | 
| 440 | 
            -
             | 
| 441 | 
            -
            from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
         | 
| 442 | 
            -
                                            setup_eval_logging)
         | 
| 443 | 
             
            from mmaudio.model.flow_matching import FlowMatching
         | 
| 444 | 
             
            from mmaudio.model.networks import MMAudio, get_my_mmaudio
         | 
| 445 | 
             
            from mmaudio.model.sequence_config import SequenceConfig
         | 
| 446 | 
             
            from mmaudio.model.utils.features_utils import FeaturesUtils
         | 
| 447 |  | 
| 448 | 
            -
            #  | 
| 449 | 
             
            MOD_VALUE = 32
         | 
| 450 | 
            -
            DEFAULT_DURATION_SECONDS =  | 
| 451 | 
            -
            DEFAULT_STEPS =  | 
| 452 | 
             
            DEFAULT_SEED = 2025
         | 
| 453 | 
            -
            DEFAULT_H_SLIDER_VALUE =  | 
| 454 | 
            -
            DEFAULT_W_SLIDER_VALUE =  | 
| 455 | 
            -
            NEW_FORMULA_MAX_AREA =  | 
| 456 |  | 
| 457 | 
            -
            SLIDER_MIN_H, SLIDER_MAX_H = 128,  | 
| 458 | 
            -
            SLIDER_MIN_W, SLIDER_MAX_W = 128,  | 
| 459 | 
             
            MAX_SEED = np.iinfo(np.int32).max
         | 
| 460 |  | 
| 461 | 
            -
            FIXED_FPS =  | 
| 462 | 
             
            MIN_FRAMES_MODEL = 8
         | 
| 463 | 
            -
            MAX_FRAMES_MODEL =  | 
| 464 |  | 
| 465 | 
             
            DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
         | 
|  | |
| 466 |  | 
| 467 | 
            -
            #  | 
| 468 | 
             
            MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
         | 
| 469 | 
             
            SUB_MODEL_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
         | 
| 470 | 
             
            SUB_MODEL_FILENAME = "Wan14BT2VFusioniX_fp16_.safetensors"
         | 
| 471 | 
             
            LORA_REPO_ID = "Kijai/WanVideo_comfy"
         | 
| 472 | 
             
            LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
         | 
| 473 |  | 
| 474 | 
            -
            #  | 
| 475 | 
            -
            print("Creating demo models...")
         | 
| 476 | 
            -
             | 
| 477 | 
            -
            # Create a simple VAE-like model for demo
         | 
| 478 | 
            -
            class DemoVAE(nn.Module):
         | 
| 479 | 
            -
                def __init__(self):
         | 
| 480 | 
            -
                    super().__init__()
         | 
| 481 | 
            -
                    self._dtype = torch.float32  # Add dtype attribute
         | 
| 482 | 
            -
                    self.encoder = nn.Sequential(
         | 
| 483 | 
            -
                        nn.Conv2d(3, 64, 3, padding=1),
         | 
| 484 | 
            -
                        nn.ReLU(),
         | 
| 485 | 
            -
                        nn.Conv2d(64, 4, 3, padding=1)
         | 
| 486 | 
            -
                    )
         | 
| 487 | 
            -
                    self.decoder = nn.Sequential(
         | 
| 488 | 
            -
                        nn.Conv2d(4, 64, 3, padding=1),
         | 
| 489 | 
            -
                        nn.ReLU(),
         | 
| 490 | 
            -
                        nn.Conv2d(64, 3, 3, padding=1),
         | 
| 491 | 
            -
                        nn.Tanh()  # Output in [-1, 1]
         | 
| 492 | 
            -
                    )
         | 
| 493 | 
            -
                    self.config = type('Config', (), {
         | 
| 494 | 
            -
                        'scaling_factor': 0.18215,
         | 
| 495 | 
            -
                        'latent_channels': 4,
         | 
| 496 | 
            -
                    })()
         | 
| 497 | 
            -
                
         | 
| 498 | 
            -
                @property
         | 
| 499 | 
            -
                def dtype(self):
         | 
| 500 | 
            -
                    """Return the dtype of the model"""
         | 
| 501 | 
            -
                    return self._dtype
         | 
| 502 | 
            -
                
         | 
| 503 | 
            -
                @dtype.setter
         | 
| 504 | 
            -
                def dtype(self, value):
         | 
| 505 | 
            -
                    """Set the dtype of the model"""
         | 
| 506 | 
            -
                    self._dtype = value
         | 
| 507 | 
            -
                
         | 
| 508 | 
            -
                def to(self, *args, **kwargs):
         | 
| 509 | 
            -
                    """Override to method to handle dtype"""
         | 
| 510 | 
            -
                    result = super().to(*args, **kwargs)
         | 
| 511 | 
            -
                    # Update dtype if moving to a specific dtype
         | 
| 512 | 
            -
                    for arg in args:
         | 
| 513 | 
            -
                        if isinstance(arg, torch.dtype):
         | 
| 514 | 
            -
                            self._dtype = arg
         | 
| 515 | 
            -
                    if 'dtype' in kwargs:
         | 
| 516 | 
            -
                        self._dtype = kwargs['dtype']
         | 
| 517 | 
            -
                    return result
         | 
| 518 | 
            -
                
         | 
| 519 | 
            -
                def encode(self, x):
         | 
| 520 | 
            -
                    # Simple encoding
         | 
| 521 | 
            -
                    encoded = self.encoder(x)
         | 
| 522 | 
            -
                    return type('EncoderOutput', (), {'latent_dist': type('LatentDist', (), {'sample': lambda: encoded})()})()
         | 
| 523 | 
            -
                
         | 
| 524 | 
            -
                def decode(self, z):
         | 
| 525 | 
            -
                    # Simple decoding
         | 
| 526 | 
            -
                    # Handle different input shapes
         | 
| 527 | 
            -
                    if z.dim() == 5:  # Video: (B, C, F, H, W)
         | 
| 528 | 
            -
                        b, c, f, h, w = z.shape
         | 
| 529 | 
            -
                        z = z.permute(0, 2, 1, 3, 4).reshape(b * f, c, h, w)
         | 
| 530 | 
            -
                        decoded = self.decoder(z)
         | 
| 531 | 
            -
                        decoded = decoded.reshape(b, f, 3, h * 8, w * 8).permute(0, 2, 1, 3, 4)
         | 
| 532 | 
            -
                    else:  # Image: (B, C, H, W)
         | 
| 533 | 
            -
                        decoded = self.decoder(z)
         | 
| 534 | 
            -
                    return type('DecoderOutput', (), {'sample': decoded})()
         | 
| 535 | 
            -
             | 
| 536 | 
            -
            vae = DemoVAE()
         | 
| 537 | 
            -
             | 
| 538 | 
            -
            print("Creating simplified NAG transformer model...")
         | 
| 539 | 
            -
            transformer = NagWanTransformer3DModel(
         | 
| 540 | 
            -
                in_channels=4,
         | 
| 541 | 
            -
                out_channels=4,
         | 
| 542 | 
            -
                hidden_size=64,  # Reduced from 1280 for demo
         | 
| 543 | 
            -
                num_layers=1,  # Reduced for demo
         | 
| 544 | 
            -
                num_heads=4  # Reduced for demo
         | 
| 545 | 
            -
            )
         | 
| 546 | 
            -
             | 
| 547 | 
            -
            print("Creating pipeline...")
         | 
| 548 | 
            -
            # Create a minimal pipeline for demo
         | 
| 549 | 
            -
            pipe = NAGWanPipeline(
         | 
| 550 | 
            -
                vae=vae,
         | 
| 551 | 
            -
                text_encoder=None,
         | 
| 552 | 
            -
                tokenizer=None,
         | 
| 553 | 
            -
                transformer=transformer,
         | 
| 554 | 
            -
                scheduler=DDPMScheduler(
         | 
| 555 | 
            -
                    num_train_timesteps=1000,
         | 
| 556 | 
            -
                    beta_start=0.00085,
         | 
| 557 | 
            -
                    beta_end=0.012,
         | 
| 558 | 
            -
                    beta_schedule="scaled_linear",
         | 
| 559 | 
            -
                    clip_sample=False,
         | 
| 560 | 
            -
                    prediction_type="epsilon",
         | 
| 561 | 
            -
                )
         | 
| 562 | 
            -
            )
         | 
| 563 | 
            -
             | 
| 564 | 
            -
            # Move to appropriate device
         | 
| 565 | 
            -
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
         | 
| 566 | 
            -
            print(f"Using device: {device}")
         | 
| 567 | 
            -
             | 
| 568 | 
            -
            # Move models to device with explicit dtype
         | 
| 569 | 
            -
            vae = vae.to(device).to(torch.float32)
         | 
| 570 | 
            -
            transformer = transformer.to(device).to(torch.float32)
         | 
| 571 | 
            -
             | 
| 572 | 
            -
            # Now move pipeline to device (it will handle the components)
         | 
| 573 | 
            -
            try:
         | 
| 574 | 
            -
                pipe = pipe.to(device)
         | 
| 575 | 
            -
                print(f"Pipeline moved to {device}")
         | 
| 576 | 
            -
            except Exception as e:
         | 
| 577 | 
            -
                print(f"Warning: Could not move pipeline to {device}: {e}")
         | 
| 578 | 
            -
                # Manually set device
         | 
| 579 | 
            -
                pipe._execution_device = device
         | 
| 580 | 
            -
             | 
| 581 | 
            -
            print("Demo version ready!")
         | 
| 582 | 
            -
             | 
| 583 | 
            -
            # Check if transformer has the required methods
         | 
| 584 | 
            -
            if hasattr(transformer, 'attn_processors'):
         | 
| 585 | 
            -
                pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
         | 
| 586 | 
            -
            if hasattr(transformer, 'set_attn_processor'):
         | 
| 587 | 
            -
                pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
         | 
| 588 | 
            -
             | 
| 589 | 
            -
            # Audio model setup
         | 
| 590 | 
             
            torch.backends.cuda.matmul.allow_tf32 = True
         | 
| 591 | 
             
            torch.backends.cudnn.allow_tf32 = True
         | 
| 592 | 
            -
             | 
| 593 | 
             
            log = logging.getLogger()
         | 
| 594 | 
            -
            device = 'cuda' | 
| 595 | 
             
            dtype = torch.bfloat16
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 596 |  | 
| 597 | 
            -
             | 
| 598 | 
            -
             | 
| 599 | 
            -
             | 
| 600 | 
            -
            audio_feature_utils = None
         | 
| 601 | 
            -
            audio_seq_cfg = None
         | 
| 602 |  | 
| 603 | 
            -
             | 
| 604 | 
            -
             | 
|  | |
| 605 |  | 
| 606 | 
            -
                 | 
| 607 | 
            -
             | 
| 608 | 
            -
             | 
| 609 | 
            -
             | 
| 610 | 
            -
             | 
| 611 | 
            -
             | 
| 612 | 
            -
             | 
| 613 | 
            -
             | 
| 614 | 
            -
             | 
| 615 | 
            -
             | 
| 616 | 
            -
             | 
| 617 | 
            -
                                                  synchformer_ckpt=audio_model.synchformer_ckpt,
         | 
| 618 | 
            -
                                                  enable_conditions=True,
         | 
| 619 | 
            -
                                                  mode=audio_model.mode,
         | 
| 620 | 
            -
                                                  bigvgan_vocoder_ckpt=audio_model.bigvgan_16k_path,
         | 
| 621 | 
            -
                                                  need_vae_encoder=False)
         | 
| 622 | 
            -
                    feature_utils = feature_utils.to(device, dtype).eval()
         | 
| 623 | 
            -
                    
         | 
| 624 | 
            -
                    audio_net = net
         | 
| 625 | 
            -
                    audio_feature_utils = feature_utils
         | 
| 626 | 
            -
                    audio_seq_cfg = seq_cfg
         | 
| 627 |  | 
| 628 | 
            -
                return  | 
| 629 |  | 
| 630 | 
            -
             | 
| 631 | 
            -
            def cleanup_temp_files():
         | 
| 632 | 
            -
                temp_dir = tempfile.gettempdir()
         | 
| 633 | 
            -
                for filename in os.listdir(temp_dir):
         | 
| 634 | 
            -
                    filepath = os.path.join(temp_dir, filename)
         | 
| 635 | 
            -
                    try:
         | 
| 636 | 
            -
                        if filename.endswith(('.mp4', '.flac', '.wav')):
         | 
| 637 | 
            -
                            os.remove(filepath)
         | 
| 638 | 
            -
                    except:
         | 
| 639 | 
            -
                        pass
         | 
| 640 |  | 
| 641 | 
            -
             | 
| 642 | 
            -
             | 
| 643 | 
            -
             | 
| 644 | 
            -
             | 
| 645 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 646 |  | 
| 647 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 648 | 
             
            css = """
         | 
| 649 | 
             
            .container {
         | 
| 650 | 
             
                max-width: 1400px;
         | 
| @@ -716,237 +300,63 @@ css = """ | |
| 716 | 
             
                margin: 10px 0;
         | 
| 717 | 
             
                border-left: 4px solid #667eea;
         | 
| 718 | 
             
            }
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 719 | 
             
            """
         | 
| 720 |  | 
| 721 | 
            -
            #  | 
| 722 | 
            -
            default_prompt = "A serene beach with waves gently rolling onto the shore"
         | 
| 723 | 
            -
            default_audio_prompt = ""
         | 
| 724 | 
            -
            default_audio_negative_prompt = "music"
         | 
| 725 | 
            -
             | 
| 726 | 
            -
             | 
| 727 | 
            -
            def get_duration(
         | 
| 728 | 
            -
                    prompt,
         | 
| 729 | 
            -
                    nag_negative_prompt, nag_scale,
         | 
| 730 | 
            -
                    height, width, duration_seconds,
         | 
| 731 | 
            -
                    steps,
         | 
| 732 | 
            -
                    seed, randomize_seed,
         | 
| 733 | 
            -
                    audio_mode, audio_prompt, audio_negative_prompt,
         | 
| 734 | 
            -
                    audio_seed, audio_steps, audio_cfg_strength,
         | 
| 735 | 
            -
            ):
         | 
| 736 | 
            -
                # Simplified duration calculation for demo
         | 
| 737 | 
            -
                duration = int(duration_seconds) * int(steps) + 10
         | 
| 738 | 
            -
                if audio_mode == "Enable Audio":
         | 
| 739 | 
            -
                    duration += 30  # Reduced from 60 for demo
         | 
| 740 | 
            -
                return min(duration, 60)  # Cap at 60 seconds for demo
         | 
| 741 | 
            -
             | 
| 742 | 
            -
            @torch.inference_mode()
         | 
| 743 | 
            -
            def add_audio_to_video(video_path, duration_sec, audio_prompt, audio_negative_prompt, 
         | 
| 744 | 
            -
                                  audio_seed, audio_steps, audio_cfg_strength):
         | 
| 745 | 
            -
                net, feature_utils, seq_cfg = load_audio_model()
         | 
| 746 | 
            -
                
         | 
| 747 | 
            -
                rng = torch.Generator(device=device)
         | 
| 748 | 
            -
                if audio_seed >= 0:
         | 
| 749 | 
            -
                    rng.manual_seed(audio_seed)
         | 
| 750 | 
            -
                else:
         | 
| 751 | 
            -
                    rng.seed()
         | 
| 752 | 
            -
                
         | 
| 753 | 
            -
                fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps)
         | 
| 754 | 
            -
                
         | 
| 755 | 
            -
                video_info = load_video(video_path, duration_sec)
         | 
| 756 | 
            -
                clip_frames = video_info.clip_frames.unsqueeze(0)
         | 
| 757 | 
            -
                sync_frames = video_info.sync_frames.unsqueeze(0)
         | 
| 758 | 
            -
                duration = video_info.duration_sec
         | 
| 759 | 
            -
                seq_cfg.duration = duration
         | 
| 760 | 
            -
                net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
         | 
| 761 | 
            -
                
         | 
| 762 | 
            -
                audios = generate(clip_frames,
         | 
| 763 | 
            -
                                  sync_frames, [audio_prompt],
         | 
| 764 | 
            -
                                  negative_text=[audio_negative_prompt],
         | 
| 765 | 
            -
                                  feature_utils=feature_utils,
         | 
| 766 | 
            -
                                  net=net,
         | 
| 767 | 
            -
                                  fm=fm,
         | 
| 768 | 
            -
                                  rng=rng,
         | 
| 769 | 
            -
                                  cfg_strength=audio_cfg_strength)
         | 
| 770 | 
            -
                audio = audios.float().cpu()[0]
         | 
| 771 | 
            -
                
         | 
| 772 | 
            -
                video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
         | 
| 773 | 
            -
                make_video(video_info, video_with_audio_path, audio, sampling_rate=seq_cfg.sampling_rate)
         | 
| 774 | 
            -
                
         | 
| 775 | 
            -
                return video_with_audio_path
         | 
| 776 | 
            -
             | 
| 777 | 
            -
            @spaces.GPU(duration=get_duration)
         | 
| 778 | 
            -
            def generate_video(
         | 
| 779 | 
            -
                    prompt,
         | 
| 780 | 
            -
                    nag_negative_prompt, nag_scale,
         | 
| 781 | 
            -
                    height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS,
         | 
| 782 | 
            -
                    steps=DEFAULT_STEPS,
         | 
| 783 | 
            -
                    seed=DEFAULT_SEED, randomize_seed=False,
         | 
| 784 | 
            -
                    audio_mode="Video Only", audio_prompt="", audio_negative_prompt="music",
         | 
| 785 | 
            -
                    audio_seed=-1, audio_steps=25, audio_cfg_strength=4.5,
         | 
| 786 | 
            -
            ):
         | 
| 787 | 
            -
                try:
         | 
| 788 | 
            -
                    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
         | 
| 789 | 
            -
                    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
         | 
| 790 | 
            -
             | 
| 791 | 
            -
                    num_frames = np.clip(int(round(int(duration_seconds) * FIXED_FPS) + 1), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
         | 
| 792 | 
            -
             | 
| 793 | 
            -
                    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
         | 
| 794 | 
            -
             | 
| 795 | 
            -
                    # Ensure transformer is on the right device and dtype
         | 
| 796 | 
            -
                    if hasattr(pipe, 'transformer'):
         | 
| 797 | 
            -
                        pipe.transformer = pipe.transformer.to(device).to(torch.float32)
         | 
| 798 | 
            -
                    if hasattr(pipe, 'vae'):
         | 
| 799 | 
            -
                        pipe.vae = pipe.vae.to(device).to(torch.float32)
         | 
| 800 | 
            -
             | 
| 801 | 
            -
                    print(f"Generating video: {target_w}x{target_h}, {num_frames} frames, seed {current_seed}")
         | 
| 802 | 
            -
             | 
| 803 | 
            -
                    with torch.inference_mode():
         | 
| 804 | 
            -
                        nag_output_frames_list = pipe(
         | 
| 805 | 
            -
                            prompt=prompt,
         | 
| 806 | 
            -
                            nag_negative_prompt=nag_negative_prompt,
         | 
| 807 | 
            -
                            nag_scale=nag_scale,
         | 
| 808 | 
            -
                            nag_tau=3.5,
         | 
| 809 | 
            -
                            nag_alpha=0.5,
         | 
| 810 | 
            -
                            height=target_h, width=target_w, num_frames=num_frames,
         | 
| 811 | 
            -
                            guidance_scale=0.,
         | 
| 812 | 
            -
                            num_inference_steps=int(steps),
         | 
| 813 | 
            -
                            generator=torch.Generator(device=device).manual_seed(current_seed)
         | 
| 814 | 
            -
                        ).frames[0]
         | 
| 815 | 
            -
             | 
| 816 | 
            -
                    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
         | 
| 817 | 
            -
                        nag_video_path = tmpfile.name
         | 
| 818 | 
            -
                    export_to_video(nag_output_frames_list, nag_video_path, fps=FIXED_FPS)
         | 
| 819 | 
            -
             | 
| 820 | 
            -
                    # Generate audio if enabled
         | 
| 821 | 
            -
                    video_with_audio_path = None
         | 
| 822 | 
            -
                    if audio_mode == "Enable Audio":
         | 
| 823 | 
            -
                        try:
         | 
| 824 | 
            -
                            video_with_audio_path = add_audio_to_video(
         | 
| 825 | 
            -
                                nag_video_path, duration_seconds, 
         | 
| 826 | 
            -
                                audio_prompt, audio_negative_prompt,
         | 
| 827 | 
            -
                                audio_seed, audio_steps, audio_cfg_strength
         | 
| 828 | 
            -
                            )
         | 
| 829 | 
            -
                        except Exception as e:
         | 
| 830 | 
            -
                            print(f"Warning: Could not generate audio: {e}")
         | 
| 831 | 
            -
                            video_with_audio_path = None
         | 
| 832 | 
            -
                    
         | 
| 833 | 
            -
                    clear_cache()
         | 
| 834 | 
            -
                    cleanup_temp_files()
         | 
| 835 | 
            -
             | 
| 836 | 
            -
                    return nag_video_path, video_with_audio_path, current_seed
         | 
| 837 | 
            -
                    
         | 
| 838 | 
            -
                except Exception as e:
         | 
| 839 | 
            -
                    print(f"Error generating video: {e}")
         | 
| 840 | 
            -
                    import traceback
         | 
| 841 | 
            -
                    traceback.print_exc()
         | 
| 842 | 
            -
                    
         | 
| 843 | 
            -
                    # Return a simple error video
         | 
| 844 | 
            -
                    error_frames = []
         | 
| 845 | 
            -
                    for i in range(8):  # Create 8 frames
         | 
| 846 | 
            -
                        frame = np.zeros((128, 128, 3), dtype=np.uint8)
         | 
| 847 | 
            -
                        frame[:, :] = [255, 0, 0]  # Red frame
         | 
| 848 | 
            -
                        # Add error text
         | 
| 849 | 
            -
                        error_frames.append(frame)
         | 
| 850 | 
            -
                    
         | 
| 851 | 
            -
                    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
         | 
| 852 | 
            -
                        error_video_path = tmpfile.name
         | 
| 853 | 
            -
                    export_to_video(error_frames, error_video_path, fps=FIXED_FPS)
         | 
| 854 | 
            -
                    return error_video_path, None, 0
         | 
| 855 | 
            -
             | 
| 856 | 
            -
            def update_audio_visibility(audio_mode):
         | 
| 857 | 
            -
                return gr.update(visible=(audio_mode == "Enable Audio"))
         | 
| 858 | 
            -
             | 
| 859 | 
            -
            # Build interface
         | 
| 860 | 
             
            with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
         | 
| 861 | 
             
                with gr.Column(elem_classes="container"):
         | 
| 862 | 
             
                    gr.HTML("""
         | 
| 863 | 
            -
                        <h1 class="main-title">🎬 NAG Video  | 
| 864 | 
            -
                        <p class="subtitle"> | 
| 865 | 
             
                    """)
         | 
| 866 |  | 
| 867 | 
             
                    gr.HTML("""
         | 
| 868 | 
             
                        <div class="info-box">
         | 
| 869 | 
            -
                            <p | 
| 870 | 
            -
                            <p | 
| 871 | 
            -
                            <p>🎵 <strong>Audio:</strong>  | 
| 872 | 
            -
                            <p>⚡ <strong>Fast:</strong> Runs without downloading 28GB model files</p>
         | 
| 873 | 
             
                        </div>
         | 
| 874 | 
             
                    """)
         | 
| 875 | 
            -
             | 
| 876 | 
             
                    with gr.Row():
         | 
| 877 | 
             
                        with gr.Column(scale=1):
         | 
| 878 | 
             
                            with gr.Group(elem_classes="prompt-container"):
         | 
| 879 | 
             
                                prompt = gr.Textbox(
         | 
| 880 | 
            -
                                    label="✨ Video Prompt",
         | 
| 881 | 
            -
                                     | 
| 882 | 
            -
                                     | 
| 883 | 
            -
                                    lines=2,
         | 
| 884 | 
             
                                    elem_classes="prompt-input"
         | 
| 885 | 
             
                                )
         | 
| 886 |  | 
| 887 | 
            -
                                with gr.Accordion("🎨 Advanced  | 
| 888 | 
             
                                    nag_negative_prompt = gr.Textbox(
         | 
| 889 | 
            -
                                        label="Negative Prompt",
         | 
| 890 | 
             
                                        value=DEFAULT_NAG_NEGATIVE_PROMPT,
         | 
| 891 | 
             
                                        lines=2,
         | 
| 892 | 
             
                                    )
         | 
| 893 | 
             
                                    nag_scale = gr.Slider(
         | 
| 894 | 
             
                                        label="NAG Scale",
         | 
| 895 | 
            -
                                        minimum= | 
| 896 | 
             
                                        maximum=20.0,
         | 
| 897 | 
             
                                        step=0.25,
         | 
| 898 | 
            -
                                        value= | 
| 899 | 
            -
                                        info="Higher values = stronger guidance | 
| 900 | 
             
                                    )
         | 
| 901 | 
            -
             | 
| 902 | 
            -
                            audio_mode = gr.Radio(
         | 
| 903 | 
            -
                                choices=["Video Only", "Enable Audio"],
         | 
| 904 | 
            -
                                value="Video Only",
         | 
| 905 | 
            -
                                label="🎵 Audio Mode",
         | 
| 906 | 
            -
                                info="Enable to add audio to your generated video"
         | 
| 907 | 
            -
                            )
         | 
| 908 |  | 
| 909 | 
            -
                            with gr.Column(visible=False) as audio_settings:
         | 
| 910 | 
            -
                                audio_prompt = gr.Textbox(
         | 
| 911 | 
            -
                                    label="🎵 Audio Prompt",
         | 
| 912 | 
            -
                                    value=default_audio_prompt,
         | 
| 913 | 
            -
                                    placeholder="Describe the audio (e.g., 'waves, seagulls', 'footsteps')",
         | 
| 914 | 
            -
                                    lines=2
         | 
| 915 | 
            -
                                )
         | 
| 916 | 
            -
                                audio_negative_prompt = gr.Textbox(
         | 
| 917 | 
            -
                                    label="❌ Audio Negative Prompt",
         | 
| 918 | 
            -
                                    value=default_audio_negative_prompt,
         | 
| 919 | 
            -
                                    lines=2
         | 
| 920 | 
            -
                                )
         | 
| 921 | 
            -
                                with gr.Row():
         | 
| 922 | 
            -
                                    audio_seed = gr.Number(
         | 
| 923 | 
            -
                                        label="🎲 Audio Seed",
         | 
| 924 | 
            -
                                        value=-1,
         | 
| 925 | 
            -
                                        precision=0,
         | 
| 926 | 
            -
                                        minimum=-1
         | 
| 927 | 
            -
                                    )
         | 
| 928 | 
            -
                                    audio_steps = gr.Slider(
         | 
| 929 | 
            -
                                        minimum=1,
         | 
| 930 | 
            -
                                        maximum=25,
         | 
| 931 | 
            -
                                        step=1,
         | 
| 932 | 
            -
                                        value=10,
         | 
| 933 | 
            -
                                        label="🚀 Audio Steps"
         | 
| 934 | 
            -
                                    )
         | 
| 935 | 
            -
                                    audio_cfg_strength = gr.Slider(
         | 
| 936 | 
            -
                                        minimum=1.0,
         | 
| 937 | 
            -
                                        maximum=10.0,
         | 
| 938 | 
            -
                                        step=0.5,
         | 
| 939 | 
            -
                                        value=4.5,
         | 
| 940 | 
            -
                                        label="🎯 Audio Guidance"
         | 
| 941 | 
            -
                                    )
         | 
| 942 | 
            -
             | 
| 943 | 
             
                            with gr.Group(elem_classes="settings-panel"):
         | 
| 944 | 
             
                                gr.Markdown("### ⚙️ Video Settings")
         | 
| 945 |  | 
| 946 | 
             
                                with gr.Row():
         | 
| 947 | 
             
                                    duration_seconds_input = gr.Slider(
         | 
| 948 | 
             
                                        minimum=1,
         | 
| 949 | 
            -
                                        maximum= | 
| 950 | 
             
                                        step=1,
         | 
| 951 | 
             
                                        value=DEFAULT_DURATION_SECONDS,
         | 
| 952 | 
             
                                        label="📱 Duration (seconds)",
         | 
| @@ -954,7 +364,7 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
| 954 | 
             
                                    )
         | 
| 955 | 
             
                                    steps_slider = gr.Slider(
         | 
| 956 | 
             
                                        minimum=1,
         | 
| 957 | 
            -
                                        maximum= | 
| 958 | 
             
                                        step=1,
         | 
| 959 | 
             
                                        value=DEFAULT_STEPS,
         | 
| 960 | 
             
                                        label="🔄 Inference Steps",
         | 
| @@ -993,81 +403,97 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
| 993 | 
             
                                        value=True,
         | 
| 994 | 
             
                                        interactive=True
         | 
| 995 | 
             
                                    )
         | 
| 996 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 997 | 
             
                            generate_button = gr.Button(
         | 
| 998 | 
            -
                                "🎬 Generate Video",
         | 
| 999 | 
             
                                variant="primary",
         | 
| 1000 | 
             
                                elem_classes="generate-btn"
         | 
| 1001 | 
             
                            )
         | 
| 1002 | 
            -
             | 
| 1003 | 
             
                        with gr.Column(scale=1):
         | 
| 1004 | 
            -
                             | 
| 1005 | 
            -
                                label="Generated Video",
         | 
| 1006 | 
             
                                autoplay=True,
         | 
| 1007 | 
             
                                interactive=False,
         | 
| 1008 | 
             
                                elem_classes="video-output"
         | 
| 1009 | 
             
                            )
         | 
| 1010 | 
            -
                            video_with_audio_output = gr.Video(
         | 
| 1011 | 
            -
                                label="🎥 Generated Video with Audio",
         | 
| 1012 | 
            -
                                autoplay=True,
         | 
| 1013 | 
            -
                                interactive=False,
         | 
| 1014 | 
            -
                                visible=False,
         | 
| 1015 | 
            -
                                elem_classes="video-output"
         | 
| 1016 | 
            -
                            )
         | 
| 1017 |  | 
| 1018 | 
             
                            gr.HTML("""
         | 
| 1019 | 
             
                                <div style="text-align: center; margin-top: 20px; color: #6b7280;">
         | 
| 1020 | 
            -
                                    <p>💡  | 
| 1021 | 
            -
                                    <p | 
| 1022 | 
             
                                </div>
         | 
| 1023 | 
             
                            """)
         | 
| 1024 | 
            -
             | 
| 1025 | 
             
                    gr.Markdown("### 🎯 Example Prompts")
         | 
| 1026 | 
             
                    gr.Examples(
         | 
| 1027 | 
            -
                        examples= | 
| 1028 | 
            -
             | 
| 1029 | 
            -
             | 
| 1030 | 
            -
             | 
| 1031 | 
            -
             | 
| 1032 | 
            -
                            ["A red car driving on a cliff road", DEFAULT_NAG_NEGATIVE_PROMPT, 5,
         | 
| 1033 | 
            -
                             128, 128, 1,
         | 
| 1034 | 
            -
                             1, DEFAULT_SEED, False,
         | 
| 1035 | 
            -
                             "Enable Audio", "car engine, wind", default_audio_negative_prompt, -1, 10, 4.5],
         | 
| 1036 | 
            -
                            ["Glowing jellyfish floating in the sky", DEFAULT_NAG_NEGATIVE_PROMPT, 5,
         | 
| 1037 | 
            -
                             128, 128, 1,
         | 
| 1038 | 
            -
                             1, DEFAULT_SEED, False,
         | 
| 1039 | 
            -
                             "Video Only", "", default_audio_negative_prompt, -1, 10, 4.5],
         | 
| 1040 | 
            -
                        ],
         | 
| 1041 | 
            -
                        fn=generate_video,
         | 
| 1042 | 
            -
                        inputs=[prompt, nag_negative_prompt, nag_scale,
         | 
| 1043 | 
             
                            height_input, width_input, duration_seconds_input,
         | 
| 1044 | 
            -
                            steps_slider, seed_input, | 
| 1045 | 
            -
                             | 
| 1046 | 
            -
             | 
| 1047 | 
            -
                        outputs=[nag_video_output, video_with_audio_output, seed_input],
         | 
| 1048 | 
             
                        cache_examples="lazy"
         | 
| 1049 | 
             
                    )
         | 
| 1050 | 
            -
             | 
| 1051 | 
            -
                #  | 
| 1052 | 
            -
                audio_mode.change(
         | 
| 1053 | 
            -
                    fn=update_audio_visibility,
         | 
| 1054 | 
            -
                    inputs=[audio_mode],
         | 
| 1055 | 
            -
                    outputs=[audio_settings, video_with_audio_output]
         | 
| 1056 | 
            -
                )
         | 
| 1057 | 
            -
             | 
| 1058 | 
             
                ui_inputs = [
         | 
| 1059 | 
             
                    prompt,
         | 
| 1060 | 
             
                    nag_negative_prompt, nag_scale,
         | 
| 1061 | 
             
                    height_input, width_input, duration_seconds_input,
         | 
| 1062 | 
             
                    steps_slider,
         | 
| 1063 | 
             
                    seed_input, randomize_seed_checkbox,
         | 
| 1064 | 
            -
                     | 
| 1065 | 
            -
                    audio_seed, audio_steps, audio_cfg_strength,
         | 
| 1066 | 
             
                ]
         | 
|  | |
| 1067 | 
             
                generate_button.click(
         | 
| 1068 | 
            -
                    fn= | 
| 1069 | 
             
                    inputs=ui_inputs,
         | 
| 1070 | 
            -
                    outputs=[ | 
| 1071 | 
             
                )
         | 
| 1072 |  | 
| 1073 | 
             
            if __name__ == "__main__":
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1 | 
             
            import types
         | 
| 2 | 
             
            import random
         | 
| 3 | 
             
            import spaces
         | 
| 4 | 
            +
            import logging
         | 
| 5 | 
            +
            import os
         | 
| 6 | 
            +
            from pathlib import Path
         | 
| 7 | 
            +
            from datetime import datetime
         | 
| 8 | 
            +
             | 
| 9 | 
             
            import torch
         | 
|  | |
| 10 | 
             
            import numpy as np
         | 
| 11 | 
            +
            import torchaudio
         | 
| 12 | 
            +
            from diffusers import AutoencoderKLWan, UniPCMultistepScheduler
         | 
| 13 | 
             
            from diffusers.utils import export_to_video
         | 
| 14 | 
            +
            from diffusers import AutoModel
         | 
| 15 | 
             
            import gradio as gr
         | 
| 16 | 
             
            import tempfile
         | 
| 17 | 
             
            from huggingface_hub import hf_hub_download
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 18 |  | 
| 19 | 
            +
            from src.pipeline_wan_nag import NAGWanPipeline
         | 
| 20 | 
            +
            from src.transformer_wan_nag import NagWanTransformer3DModel
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 21 |  | 
| 22 | 
             
            # MMAudio imports
         | 
| 23 | 
             
            try:
         | 
|  | |
| 26 | 
             
                os.system("pip install -e .")
         | 
| 27 | 
             
                import mmaudio
         | 
| 28 |  | 
| 29 | 
            +
            from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate as mmaudio_generate, 
         | 
| 30 | 
            +
                                            load_video, make_video, setup_eval_logging)
         | 
|  | |
|  | |
|  | |
|  | |
| 31 | 
             
            from mmaudio.model.flow_matching import FlowMatching
         | 
| 32 | 
             
            from mmaudio.model.networks import MMAudio, get_my_mmaudio
         | 
| 33 | 
             
            from mmaudio.model.sequence_config import SequenceConfig
         | 
| 34 | 
             
            from mmaudio.model.utils.features_utils import FeaturesUtils
         | 
| 35 |  | 
| 36 | 
            +
            # NAG Video Settings
         | 
| 37 | 
             
            MOD_VALUE = 32
         | 
| 38 | 
            +
            DEFAULT_DURATION_SECONDS = 4
         | 
| 39 | 
            +
            DEFAULT_STEPS = 4
         | 
| 40 | 
             
            DEFAULT_SEED = 2025
         | 
| 41 | 
            +
            DEFAULT_H_SLIDER_VALUE = 480
         | 
| 42 | 
            +
            DEFAULT_W_SLIDER_VALUE = 832
         | 
| 43 | 
            +
            NEW_FORMULA_MAX_AREA = 480.0 * 832.0
         | 
| 44 |  | 
| 45 | 
            +
            SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
         | 
| 46 | 
            +
            SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
         | 
| 47 | 
             
            MAX_SEED = np.iinfo(np.int32).max
         | 
| 48 |  | 
| 49 | 
            +
            FIXED_FPS = 16
         | 
| 50 | 
             
            MIN_FRAMES_MODEL = 8
         | 
| 51 | 
            +
            MAX_FRAMES_MODEL = 129
         | 
| 52 |  | 
| 53 | 
             
            DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
         | 
| 54 | 
            +
            DEFAULT_AUDIO_NEGATIVE_PROMPT = "music"
         | 
| 55 |  | 
| 56 | 
            +
            # NAG Model Settings
         | 
| 57 | 
             
            MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
         | 
| 58 | 
             
            SUB_MODEL_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
         | 
| 59 | 
             
            SUB_MODEL_FILENAME = "Wan14BT2VFusioniX_fp16_.safetensors"
         | 
| 60 | 
             
            LORA_REPO_ID = "Kijai/WanVideo_comfy"
         | 
| 61 | 
             
            LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
         | 
| 62 |  | 
| 63 | 
            +
            # MMAudio Settings
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 64 | 
             
            torch.backends.cuda.matmul.allow_tf32 = True
         | 
| 65 | 
             
            torch.backends.cudnn.allow_tf32 = True
         | 
|  | |
| 66 | 
             
            log = logging.getLogger()
         | 
| 67 | 
            +
            device = 'cuda'
         | 
| 68 | 
             
            dtype = torch.bfloat16
         | 
| 69 | 
            +
            audio_model_config: ModelConfig = all_model_cfg['large_44k_v2']
         | 
| 70 | 
            +
            audio_model_config.download_if_needed()
         | 
| 71 | 
            +
            setup_eval_logging()
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            # Initialize NAG Video Model
         | 
| 74 | 
            +
            vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
         | 
| 75 | 
            +
            wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME)
         | 
| 76 | 
            +
            transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16)
         | 
| 77 | 
            +
            pipe = NAGWanPipeline.from_pretrained(
         | 
| 78 | 
            +
                MODEL_ID, vae=vae, transformer=transformer, torch_dtype=torch.bfloat16
         | 
| 79 | 
            +
            )
         | 
| 80 | 
            +
            pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
         | 
| 81 | 
            +
            pipe.to("cuda")
         | 
| 82 |  | 
| 83 | 
            +
            pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
         | 
| 84 | 
            +
            pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
         | 
| 85 | 
            +
            pipe.transformer.__class__.forward = NagWanTransformer3DModel.forward
         | 
|  | |
|  | |
| 86 |  | 
| 87 | 
            +
            # Initialize MMAudio Model
         | 
| 88 | 
            +
            def get_mmaudio_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
         | 
| 89 | 
            +
                seq_cfg = audio_model_config.seq_cfg
         | 
| 90 |  | 
| 91 | 
            +
                net: MMAudio = get_my_mmaudio(audio_model_config.model_name).to(device, dtype).eval()
         | 
| 92 | 
            +
                net.load_weights(torch.load(audio_model_config.model_path, map_location=device, weights_only=True))
         | 
| 93 | 
            +
                log.info(f'Loaded MMAudio weights from {audio_model_config.model_path}')
         | 
| 94 | 
            +
                
         | 
| 95 | 
            +
                feature_utils = FeaturesUtils(tod_vae_ckpt=audio_model_config.vae_path,
         | 
| 96 | 
            +
                                              synchformer_ckpt=audio_model_config.synchformer_ckpt,
         | 
| 97 | 
            +
                                              enable_conditions=True,
         | 
| 98 | 
            +
                                              mode=audio_model_config.mode,
         | 
| 99 | 
            +
                                              bigvgan_vocoder_ckpt=audio_model_config.bigvgan_16k_path,
         | 
| 100 | 
            +
                                              need_vae_encoder=False)
         | 
| 101 | 
            +
                feature_utils = feature_utils.to(device, dtype).eval()
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 102 |  | 
| 103 | 
            +
                return net, feature_utils, seq_cfg
         | 
| 104 |  | 
| 105 | 
            +
            audio_net, audio_feature_utils, audio_seq_cfg = get_mmaudio_model()
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 106 |  | 
| 107 | 
            +
            # Audio generation function
         | 
| 108 | 
            +
            @torch.inference_mode()
         | 
| 109 | 
            +
            def add_audio_to_video(video_path, prompt, audio_negative_prompt, audio_steps, audio_cfg_strength, duration):
         | 
| 110 | 
            +
                """Generate and add audio to video using MMAudio"""
         | 
| 111 | 
            +
                rng = torch.Generator(device=device)
         | 
| 112 | 
            +
                rng.seed()  # Random seed for audio
         | 
| 113 | 
            +
                fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps)
         | 
| 114 | 
            +
                
         | 
| 115 | 
            +
                video_info = load_video(video_path, duration)
         | 
| 116 | 
            +
                clip_frames = video_info.clip_frames
         | 
| 117 | 
            +
                sync_frames = video_info.sync_frames
         | 
| 118 | 
            +
                duration = video_info.duration_sec
         | 
| 119 | 
            +
                clip_frames = clip_frames.unsqueeze(0)
         | 
| 120 | 
            +
                sync_frames = sync_frames.unsqueeze(0)
         | 
| 121 | 
            +
                audio_seq_cfg.duration = duration
         | 
| 122 | 
            +
                audio_net.update_seq_lengths(audio_seq_cfg.latent_seq_len, audio_seq_cfg.clip_seq_len, audio_seq_cfg.sync_seq_len)
         | 
| 123 | 
            +
                
         | 
| 124 | 
            +
                audios = mmaudio_generate(clip_frames,
         | 
| 125 | 
            +
                                          sync_frames, [prompt],
         | 
| 126 | 
            +
                                          negative_text=[audio_negative_prompt],
         | 
| 127 | 
            +
                                          feature_utils=audio_feature_utils,
         | 
| 128 | 
            +
                                          net=audio_net,
         | 
| 129 | 
            +
                                          fm=fm,
         | 
| 130 | 
            +
                                          rng=rng,
         | 
| 131 | 
            +
                                          cfg_strength=audio_cfg_strength)
         | 
| 132 | 
            +
                audio = audios.float().cpu()[0]
         | 
| 133 | 
            +
                
         | 
| 134 | 
            +
                # Create video with audio
         | 
| 135 | 
            +
                video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
         | 
| 136 | 
            +
                make_video(video_info, video_with_audio_path, audio, sampling_rate=audio_seq_cfg.sampling_rate)
         | 
| 137 | 
            +
                
         | 
| 138 | 
            +
                return video_with_audio_path
         | 
| 139 | 
            +
             | 
| 140 | 
            +
            # Combined generation function
         | 
| 141 | 
            +
            def get_duration(prompt, nag_negative_prompt, nag_scale, height, width, duration_seconds, 
         | 
| 142 | 
            +
                             steps, seed, randomize_seed, enable_audio, audio_negative_prompt, 
         | 
| 143 | 
            +
                             audio_steps, audio_cfg_strength):
         | 
| 144 | 
            +
                # Calculate total duration including audio processing if enabled
         | 
| 145 | 
            +
                video_duration = int(duration_seconds) * int(steps) * 2.25 + 5
         | 
| 146 | 
            +
                audio_duration = 30 if enable_audio else 0  # Additional time for audio processing
         | 
| 147 | 
            +
                return video_duration + audio_duration
         | 
| 148 |  | 
| 149 | 
            +
            @spaces.GPU(duration=get_duration)
         | 
| 150 | 
            +
            def generate_video_with_audio(
         | 
| 151 | 
            +
                    prompt,
         | 
| 152 | 
            +
                    nag_negative_prompt, nag_scale,
         | 
| 153 | 
            +
                    height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS,
         | 
| 154 | 
            +
                    steps=DEFAULT_STEPS,
         | 
| 155 | 
            +
                    seed=DEFAULT_SEED, randomize_seed=False,
         | 
| 156 | 
            +
                    enable_audio=True, audio_negative_prompt=DEFAULT_AUDIO_NEGATIVE_PROMPT,
         | 
| 157 | 
            +
                    audio_steps=25, audio_cfg_strength=4.5,
         | 
| 158 | 
            +
            ):
         | 
| 159 | 
            +
                # Generate video first
         | 
| 160 | 
            +
                target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
         | 
| 161 | 
            +
                target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
         | 
| 162 | 
            +
                
         | 
| 163 | 
            +
                num_frames = np.clip(int(round(int(duration_seconds) * FIXED_FPS) + 1), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
         | 
| 164 | 
            +
                
         | 
| 165 | 
            +
                current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
         | 
| 166 | 
            +
                
         | 
| 167 | 
            +
                with torch.inference_mode():
         | 
| 168 | 
            +
                    nag_output_frames_list = pipe(
         | 
| 169 | 
            +
                        prompt=prompt,
         | 
| 170 | 
            +
                        nag_negative_prompt=nag_negative_prompt,
         | 
| 171 | 
            +
                        nag_scale=nag_scale,
         | 
| 172 | 
            +
                        nag_tau=3.5,
         | 
| 173 | 
            +
                        nag_alpha=0.5,
         | 
| 174 | 
            +
                        height=target_h, width=target_w, num_frames=num_frames,
         | 
| 175 | 
            +
                        guidance_scale=0.,
         | 
| 176 | 
            +
                        num_inference_steps=int(steps),
         | 
| 177 | 
            +
                        generator=torch.Generator(device="cuda").manual_seed(current_seed)
         | 
| 178 | 
            +
                    ).frames[0]
         | 
| 179 | 
            +
                
         | 
| 180 | 
            +
                # Save initial video without audio
         | 
| 181 | 
            +
                with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
         | 
| 182 | 
            +
                    temp_video_path = tmpfile.name
         | 
| 183 | 
            +
                export_to_video(nag_output_frames_list, temp_video_path, fps=FIXED_FPS)
         | 
| 184 | 
            +
                
         | 
| 185 | 
            +
                # Add audio if enabled
         | 
| 186 | 
            +
                if enable_audio:
         | 
| 187 | 
            +
                    try:
         | 
| 188 | 
            +
                        final_video_path = add_audio_to_video(
         | 
| 189 | 
            +
                            temp_video_path, 
         | 
| 190 | 
            +
                            prompt,  # Use the same prompt for audio generation
         | 
| 191 | 
            +
                            audio_negative_prompt,
         | 
| 192 | 
            +
                            audio_steps,
         | 
| 193 | 
            +
                            audio_cfg_strength,
         | 
| 194 | 
            +
                            duration_seconds
         | 
| 195 | 
            +
                        )
         | 
| 196 | 
            +
                        # Clean up temp video
         | 
| 197 | 
            +
                        if os.path.exists(temp_video_path):
         | 
| 198 | 
            +
                            os.remove(temp_video_path)
         | 
| 199 | 
            +
                    except Exception as e:
         | 
| 200 | 
            +
                        log.error(f"Audio generation failed: {e}")
         | 
| 201 | 
            +
                        final_video_path = temp_video_path
         | 
| 202 | 
            +
                else:
         | 
| 203 | 
            +
                    final_video_path = temp_video_path
         | 
| 204 | 
            +
                
         | 
| 205 | 
            +
                return final_video_path, current_seed
         | 
| 206 | 
            +
             | 
| 207 | 
            +
            # Example generation function
         | 
| 208 | 
            +
            def generate_with_example(prompt, nag_negative_prompt, nag_scale):
         | 
| 209 | 
            +
                video_path, seed = generate_video_with_audio(
         | 
| 210 | 
            +
                    prompt=prompt,
         | 
| 211 | 
            +
                    nag_negative_prompt=nag_negative_prompt, nag_scale=nag_scale,
         | 
| 212 | 
            +
                    height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, 
         | 
| 213 | 
            +
                    duration_seconds=DEFAULT_DURATION_SECONDS,
         | 
| 214 | 
            +
                    steps=DEFAULT_STEPS,
         | 
| 215 | 
            +
                    seed=DEFAULT_SEED, randomize_seed=False,
         | 
| 216 | 
            +
                    enable_audio=True, audio_negative_prompt=DEFAULT_AUDIO_NEGATIVE_PROMPT,
         | 
| 217 | 
            +
                    audio_steps=25, audio_cfg_strength=4.5,
         | 
| 218 | 
            +
                )
         | 
| 219 | 
            +
                return video_path, \
         | 
| 220 | 
            +
                    DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, \
         | 
| 221 | 
            +
                    DEFAULT_DURATION_SECONDS, DEFAULT_STEPS, seed, \
         | 
| 222 | 
            +
                    True, DEFAULT_AUDIO_NEGATIVE_PROMPT, 25, 4.5
         | 
| 223 | 
            +
             | 
| 224 | 
            +
            # Examples with audio descriptions
         | 
| 225 | 
            +
            examples = [
         | 
| 226 | 
            +
                ["A ginger cat passionately plays electric guitar with intensity and emotion on a stage. The background is shrouded in deep darkness. Spotlights cast dramatic shadows.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
         | 
| 227 | 
            +
                ["A red vintage Porsche convertible flying over a rugged coastal cliff. Monstrous waves violently crashing against the rocks below. A lighthouse stands tall atop the cliff.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
         | 
| 228 | 
            +
                ["Enormous glowing jellyfish float slowly across a sky filled with soft clouds. Their tentacles shimmer with iridescent light as they drift above a peaceful mountain landscape. Magical and dreamlike, captured in a wide shot. Surreal realism style with detailed textures.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
         | 
| 229 | 
            +
            ]
         | 
| 230 | 
            +
             | 
| 231 | 
            +
            # CSS styling
         | 
| 232 | 
             
            css = """
         | 
| 233 | 
             
            .container {
         | 
| 234 | 
             
                max-width: 1400px;
         | 
|  | |
| 300 | 
             
                margin: 10px 0;
         | 
| 301 | 
             
                border-left: 4px solid #667eea;
         | 
| 302 | 
             
            }
         | 
| 303 | 
            +
            .audio-settings {
         | 
| 304 | 
            +
                background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
         | 
| 305 | 
            +
                border-radius: 10px;
         | 
| 306 | 
            +
                padding: 15px;
         | 
| 307 | 
            +
                margin-top: 10px;
         | 
| 308 | 
            +
                border-left: 4px solid #f59e0b;
         | 
| 309 | 
            +
            }
         | 
| 310 | 
             
            """
         | 
| 311 |  | 
| 312 | 
            +
            # Gradio interface
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 313 | 
             
            with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
         | 
| 314 | 
             
                with gr.Column(elem_classes="container"):
         | 
| 315 | 
             
                    gr.HTML("""
         | 
| 316 | 
            +
                        <h1 class="main-title">🎬 NAG Video Generator with Auto Audio</h1>
         | 
| 317 | 
            +
                        <p class="subtitle">Fast 4-step Wan2.1-T2V-14B with NAG + Automatic Audio Generation</p>
         | 
| 318 | 
             
                    """)
         | 
| 319 |  | 
| 320 | 
             
                    gr.HTML("""
         | 
| 321 | 
             
                        <div class="info-box">
         | 
| 322 | 
            +
                            <p>🚀 <strong>Powered by:</strong> NAG + CausVid LoRA for video + MMAudio for automatic audio synthesis</p>
         | 
| 323 | 
            +
                            <p>⚡ <strong>Speed:</strong> Generate videos with synchronized audio in one click!</p>
         | 
| 324 | 
            +
                            <p>🎵 <strong>Audio:</strong> Automatically generates matching audio based on your video prompt</p>
         | 
|  | |
| 325 | 
             
                        </div>
         | 
| 326 | 
             
                    """)
         | 
| 327 | 
            +
                    
         | 
| 328 | 
             
                    with gr.Row():
         | 
| 329 | 
             
                        with gr.Column(scale=1):
         | 
| 330 | 
             
                            with gr.Group(elem_classes="prompt-container"):
         | 
| 331 | 
             
                                prompt = gr.Textbox(
         | 
| 332 | 
            +
                                    label="✨ Video Prompt (also used for audio generation)",
         | 
| 333 | 
            +
                                    placeholder="Describe your video scene in detail...",
         | 
| 334 | 
            +
                                    lines=3,
         | 
|  | |
| 335 | 
             
                                    elem_classes="prompt-input"
         | 
| 336 | 
             
                                )
         | 
| 337 |  | 
| 338 | 
            +
                                with gr.Accordion("🎨 Advanced Video Settings", open=False):
         | 
| 339 | 
             
                                    nag_negative_prompt = gr.Textbox(
         | 
| 340 | 
            +
                                        label="Video Negative Prompt",
         | 
| 341 | 
             
                                        value=DEFAULT_NAG_NEGATIVE_PROMPT,
         | 
| 342 | 
             
                                        lines=2,
         | 
| 343 | 
             
                                    )
         | 
| 344 | 
             
                                    nag_scale = gr.Slider(
         | 
| 345 | 
             
                                        label="NAG Scale",
         | 
| 346 | 
            +
                                        minimum=1.0,
         | 
| 347 | 
             
                                        maximum=20.0,
         | 
| 348 | 
             
                                        step=0.25,
         | 
| 349 | 
            +
                                        value=11.0,
         | 
| 350 | 
            +
                                        info="Higher values = stronger guidance"
         | 
| 351 | 
             
                                    )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 352 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 353 | 
             
                            with gr.Group(elem_classes="settings-panel"):
         | 
| 354 | 
             
                                gr.Markdown("### ⚙️ Video Settings")
         | 
| 355 |  | 
| 356 | 
             
                                with gr.Row():
         | 
| 357 | 
             
                                    duration_seconds_input = gr.Slider(
         | 
| 358 | 
             
                                        minimum=1,
         | 
| 359 | 
            +
                                        maximum=8,
         | 
| 360 | 
             
                                        step=1,
         | 
| 361 | 
             
                                        value=DEFAULT_DURATION_SECONDS,
         | 
| 362 | 
             
                                        label="📱 Duration (seconds)",
         | 
|  | |
| 364 | 
             
                                    )
         | 
| 365 | 
             
                                    steps_slider = gr.Slider(
         | 
| 366 | 
             
                                        minimum=1,
         | 
| 367 | 
            +
                                        maximum=8,
         | 
| 368 | 
             
                                        step=1,
         | 
| 369 | 
             
                                        value=DEFAULT_STEPS,
         | 
| 370 | 
             
                                        label="🔄 Inference Steps",
         | 
|  | |
| 403 | 
             
                                        value=True,
         | 
| 404 | 
             
                                        interactive=True
         | 
| 405 | 
             
                                    )
         | 
| 406 | 
            +
                            
         | 
| 407 | 
            +
                            with gr.Group(elem_classes="audio-settings"):
         | 
| 408 | 
            +
                                gr.Markdown("### 🎵 Audio Generation Settings")
         | 
| 409 | 
            +
                                
         | 
| 410 | 
            +
                                enable_audio = gr.Checkbox(
         | 
| 411 | 
            +
                                    label="🔊 Enable Automatic Audio Generation",
         | 
| 412 | 
            +
                                    value=True,
         | 
| 413 | 
            +
                                    interactive=True
         | 
| 414 | 
            +
                                )
         | 
| 415 | 
            +
                                
         | 
| 416 | 
            +
                                with gr.Column(visible=True) as audio_settings_group:
         | 
| 417 | 
            +
                                    audio_negative_prompt = gr.Textbox(
         | 
| 418 | 
            +
                                        label="Audio Negative Prompt",
         | 
| 419 | 
            +
                                        value=DEFAULT_AUDIO_NEGATIVE_PROMPT,
         | 
| 420 | 
            +
                                        placeholder="Elements to avoid in audio (e.g., music, speech)",
         | 
| 421 | 
            +
                                    )
         | 
| 422 | 
            +
                                    
         | 
| 423 | 
            +
                                    with gr.Row():
         | 
| 424 | 
            +
                                        audio_steps = gr.Slider(
         | 
| 425 | 
            +
                                            minimum=10,
         | 
| 426 | 
            +
                                            maximum=50,
         | 
| 427 | 
            +
                                            step=5,
         | 
| 428 | 
            +
                                            value=25,
         | 
| 429 | 
            +
                                            label="🎚️ Audio Steps",
         | 
| 430 | 
            +
                                            info="More steps = better quality"
         | 
| 431 | 
            +
                                        )
         | 
| 432 | 
            +
                                        audio_cfg_strength = gr.Slider(
         | 
| 433 | 
            +
                                            minimum=1.0,
         | 
| 434 | 
            +
                                            maximum=10.0,
         | 
| 435 | 
            +
                                            step=0.5,
         | 
| 436 | 
            +
                                            value=4.5,
         | 
| 437 | 
            +
                                            label="🎛️ Audio Guidance",
         | 
| 438 | 
            +
                                            info="Strength of prompt guidance"
         | 
| 439 | 
            +
                                        )
         | 
| 440 | 
            +
                                
         | 
| 441 | 
            +
                                # Toggle audio settings visibility
         | 
| 442 | 
            +
                                enable_audio.change(
         | 
| 443 | 
            +
                                    fn=lambda x: gr.update(visible=x),
         | 
| 444 | 
            +
                                    inputs=[enable_audio],
         | 
| 445 | 
            +
                                    outputs=[audio_settings_group]
         | 
| 446 | 
            +
                                )
         | 
| 447 | 
            +
                            
         | 
| 448 | 
             
                            generate_button = gr.Button(
         | 
| 449 | 
            +
                                "🎬 Generate Video with Audio",
         | 
| 450 | 
             
                                variant="primary",
         | 
| 451 | 
             
                                elem_classes="generate-btn"
         | 
| 452 | 
             
                            )
         | 
| 453 | 
            +
                        
         | 
| 454 | 
             
                        with gr.Column(scale=1):
         | 
| 455 | 
            +
                            video_output = gr.Video(
         | 
| 456 | 
            +
                                label="Generated Video with Audio",
         | 
| 457 | 
             
                                autoplay=True,
         | 
| 458 | 
             
                                interactive=False,
         | 
| 459 | 
             
                                elem_classes="video-output"
         | 
| 460 | 
             
                            )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 461 |  | 
| 462 | 
             
                            gr.HTML("""
         | 
| 463 | 
             
                                <div style="text-align: center; margin-top: 20px; color: #6b7280;">
         | 
| 464 | 
            +
                                    <p>💡 Tip: The same prompt is used for both video and audio generation!</p>
         | 
| 465 | 
            +
                                    <p>🎧 Audio is automatically matched to the visual content</p>
         | 
| 466 | 
             
                                </div>
         | 
| 467 | 
             
                            """)
         | 
| 468 | 
            +
                    
         | 
| 469 | 
             
                    gr.Markdown("### 🎯 Example Prompts")
         | 
| 470 | 
             
                    gr.Examples(
         | 
| 471 | 
            +
                        examples=examples,
         | 
| 472 | 
            +
                        fn=generate_with_example,
         | 
| 473 | 
            +
                        inputs=[prompt, nag_negative_prompt, nag_scale],
         | 
| 474 | 
            +
                        outputs=[
         | 
| 475 | 
            +
                            video_output,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 476 | 
             
                            height_input, width_input, duration_seconds_input,
         | 
| 477 | 
            +
                            steps_slider, seed_input,
         | 
| 478 | 
            +
                            enable_audio, audio_negative_prompt, audio_steps, audio_cfg_strength
         | 
| 479 | 
            +
                        ],
         | 
|  | |
| 480 | 
             
                        cache_examples="lazy"
         | 
| 481 | 
             
                    )
         | 
| 482 | 
            +
                
         | 
| 483 | 
            +
                # Connect UI elements
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 484 | 
             
                ui_inputs = [
         | 
| 485 | 
             
                    prompt,
         | 
| 486 | 
             
                    nag_negative_prompt, nag_scale,
         | 
| 487 | 
             
                    height_input, width_input, duration_seconds_input,
         | 
| 488 | 
             
                    steps_slider,
         | 
| 489 | 
             
                    seed_input, randomize_seed_checkbox,
         | 
| 490 | 
            +
                    enable_audio, audio_negative_prompt, audio_steps, audio_cfg_strength,
         | 
|  | |
| 491 | 
             
                ]
         | 
| 492 | 
            +
                
         | 
| 493 | 
             
                generate_button.click(
         | 
| 494 | 
            +
                    fn=generate_video_with_audio,
         | 
| 495 | 
             
                    inputs=ui_inputs,
         | 
| 496 | 
            +
                    outputs=[video_output, seed_input],
         | 
| 497 | 
             
                )
         | 
| 498 |  | 
| 499 | 
             
            if __name__ == "__main__":
         | 
 
			

