Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Any, Dict, Optional, Tuple, Union | |
| import torch | |
| from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers | |
| from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
| from diffusers.models.transformers.transformer_wan import WanTransformer3DModel | |
| from diffusers.models.attention_processor import AttentionProcessor | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class NagWanTransformer3DModel(WanTransformer3DModel): | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor() | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| timestep: torch.LongTensor, | |
| encoder_hidden_states: torch.Tensor, | |
| encoder_hidden_states_image: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: | |
| if attention_kwargs is not None: | |
| attention_kwargs = attention_kwargs.copy() | |
| lora_scale = attention_kwargs.pop("scale", 1.0) | |
| else: | |
| lora_scale = 1.0 | |
| if USE_PEFT_BACKEND: | |
| # weight the lora layers by setting `lora_scale` for each PEFT layer | |
| scale_lora_layers(self, lora_scale) | |
| else: | |
| if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
| logger.warning( | |
| "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
| ) | |
| batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
| p_t, p_h, p_w = self.config.patch_size | |
| post_patch_num_frames = num_frames // p_t | |
| post_patch_height = height // p_h | |
| post_patch_width = width // p_w | |
| rotary_emb = self.rope(hidden_states) | |
| hidden_states = self.patch_embedding(hidden_states) | |
| hidden_states = hidden_states.flatten(2).transpose(1, 2) | |
| temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image = self.condition_embedder( | |
| timestep, encoder_hidden_states, encoder_hidden_states_image | |
| ) | |
| timestep_proj = timestep_proj.unflatten(1, (6, -1)) | |
| if encoder_hidden_states_image is not None: | |
| bs_encoder_hidden_states = len(encoder_hidden_states) | |
| bs_encoder_hidden_states_image = len(encoder_hidden_states_image) | |
| bs_scale = bs_encoder_hidden_states / bs_encoder_hidden_states_image | |
| assert bs_scale in [1, 2, 3] | |
| if bs_scale != 1: | |
| encoder_hidden_states_image = encoder_hidden_states_image.tile(int(bs_scale), 1, 1) | |
| encoder_hidden_states = torch.concat([encoder_hidden_states_image, encoder_hidden_states], dim=1) | |
| # 4. Transformer blocks | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| for block in self.blocks: | |
| hidden_states = self._gradient_checkpointing_func( | |
| block, hidden_states, encoder_hidden_states, timestep_proj, rotary_emb | |
| ) | |
| else: | |
| for block in self.blocks: | |
| hidden_states = block(hidden_states, encoder_hidden_states, timestep_proj, rotary_emb) | |
| # 5. Output norm, projection & unpatchify | |
| shift, scale = (self.scale_shift_table + temb.unsqueeze(1)).chunk(2, dim=1) | |
| # Move the shift and scale tensors to the same device as hidden_states. | |
| # When using multi-GPU inference via accelerate these will be on the | |
| # first device rather than the last device, which hidden_states ends up | |
| # on. | |
| shift = shift.to(hidden_states.device) | |
| scale = scale.to(hidden_states.device) | |
| hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states) | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = hidden_states.reshape( | |
| batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1 | |
| ) | |
| hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6) | |
| output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3) | |
| if USE_PEFT_BACKEND: | |
| # remove `lora_scale` from each PEFT layer | |
| unscale_lora_layers(self, lora_scale) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer2DModelOutput(sample=output) |