Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Optional | |
| import torch | |
| import torch.nn.functional as F | |
| from diffusers.models.attention_processor import Attention | |
| from ftfy import apply_plan | |
| class NAGWanAttnProcessor2_0: | |
| def __init__(self, nag_scale=1.0, nag_tau=2.5, nag_alpha=0.25): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("WanAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.") | |
| self.nag_scale = nag_scale | |
| self.nag_tau = nag_tau | |
| self.nag_alpha = nag_alpha | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| rotary_emb: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| apply_guidance = self.nag_scale > 1 and encoder_hidden_states is not None | |
| if apply_guidance: | |
| if len(encoder_hidden_states) == 2 * len(hidden_states): | |
| batch_size = len(hidden_states) | |
| else: | |
| apply_guidance = False | |
| encoder_hidden_states_img = None | |
| if attn.add_k_proj is not None: | |
| encoder_hidden_states_img = encoder_hidden_states[:, :257] | |
| encoder_hidden_states = encoder_hidden_states[:, 257:] | |
| if apply_guidance: | |
| encoder_hidden_states_img = encoder_hidden_states_img[:batch_size] | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| if attn.norm_q is not None: | |
| query = attn.norm_q(query) | |
| if attn.norm_k is not None: | |
| key = attn.norm_k(key) | |
| query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| if rotary_emb is not None: | |
| def apply_rotary_emb(hidden_states: torch.Tensor, freqs: torch.Tensor): | |
| x_rotated = torch.view_as_complex(hidden_states.to(torch.float64).unflatten(3, (-1, 2))) | |
| x_out = torch.view_as_real(x_rotated * freqs).flatten(3, 4) | |
| return x_out.type_as(hidden_states) | |
| query = apply_rotary_emb(query, rotary_emb) | |
| key = apply_rotary_emb(key, rotary_emb) | |
| # I2V task | |
| hidden_states_img = None | |
| if encoder_hidden_states_img is not None: | |
| key_img = attn.add_k_proj(encoder_hidden_states_img) | |
| key_img = attn.norm_added_k(key_img) | |
| value_img = attn.add_v_proj(encoder_hidden_states_img) | |
| key_img = key_img.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| value_img = value_img.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| hidden_states_img = F.scaled_dot_product_attention( | |
| query, key_img, value_img, attn_mask=None, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states_img = hidden_states_img.transpose(1, 2).flatten(2, 3) | |
| hidden_states_img = hidden_states_img.type_as(query) | |
| if apply_guidance: | |
| key, key_negative = torch.chunk(key, 2, dim=0) | |
| value, value_negative = torch.chunk(value, 2, dim=0) | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) | |
| hidden_states = hidden_states.type_as(query) | |
| if apply_guidance: | |
| hidden_states_negative = F.scaled_dot_product_attention( | |
| query, key_negative, value_negative, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states_negative = hidden_states_negative.transpose(1, 2).flatten(2, 3) | |
| hidden_states_negative = hidden_states_negative.type_as(query) | |
| hidden_states_positive = hidden_states | |
| hidden_states_guidance = hidden_states_positive * self.nag_scale - hidden_states_negative * (self.nag_scale - 1) | |
| norm_positive = torch.norm(hidden_states_positive, p=1, dim=-1, keepdim=True).expand(*hidden_states_positive.shape) | |
| norm_guidance = torch.norm(hidden_states_guidance, p=1, dim=-1, keepdim=True).expand(*hidden_states_guidance.shape) | |
| scale = norm_guidance / norm_positive | |
| scale = torch.nan_to_num(scale, 10) | |
| hidden_states_guidance[scale > self.nag_tau] = \ | |
| hidden_states_guidance[scale > self.nag_tau] / (norm_guidance[scale > self.nag_tau] + 1e-7) * norm_positive[scale > self.nag_tau] * self.nag_tau | |
| hidden_states = hidden_states_guidance * self.nag_alpha + hidden_states_positive * (1 - self.nag_alpha) | |
| if hidden_states_img is not None: | |
| hidden_states = hidden_states + hidden_states_img | |
| hidden_states = attn.to_out[0](hidden_states) | |
| hidden_states = attn.to_out[1](hidden_states) | |
| return hidden_states | |