Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,118 +9,203 @@ import base64, os
|
|
9 |
from huggingface_hub import snapshot_download
|
10 |
import traceback
|
11 |
import warnings
|
|
|
12 |
|
13 |
# Suppress specific warnings
|
14 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
15 |
warnings.filterwarnings("ignore", message=".*_supports_sdpa.*")
|
16 |
|
17 |
-
#
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Download repository (if not already downloaded)
|
21 |
-
repo_id = "microsoft/OmniParser-v2.0"
|
22 |
-
local_dir = "weights"
|
23 |
|
24 |
-
# Check if weights already exist to avoid re-downloading
|
25 |
if not os.path.exists(local_dir):
|
26 |
snapshot_download(repo_id=repo_id, local_dir=local_dir)
|
27 |
print(f"Repository downloaded to: {local_dir}")
|
28 |
else:
|
29 |
print(f"Weights already exist at: {local_dir}")
|
30 |
|
31 |
-
#
|
32 |
-
def
|
33 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
try:
|
35 |
-
import
|
36 |
-
from transformers import AutoModelForCausalLM
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
|
45 |
-
#
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
66 |
|
67 |
except Exception as e:
|
68 |
-
print(f"
|
69 |
-
|
70 |
-
# Apply the patch before loading models
|
71 |
-
patch_florence2_model()
|
72 |
|
73 |
-
# Load models
|
74 |
try:
|
75 |
print("Loading YOLO model...")
|
76 |
yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
|
77 |
print("YOLO model loaded successfully")
|
78 |
|
79 |
print("Loading caption model...")
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
model_name="florence2",
|
84 |
-
model_name_or_path="weights/icon_caption"
|
85 |
-
)
|
86 |
-
print("Florence2 caption model loaded successfully")
|
87 |
-
except Exception as e:
|
88 |
-
print(f"Error loading Florence2, trying alternative approach: {e}")
|
89 |
-
# Alternative loading method
|
90 |
-
import sys
|
91 |
-
sys.path.insert(0, "weights/icon_caption")
|
92 |
-
|
93 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
94 |
-
|
95 |
-
# Load with specific configurations to avoid SDPA issues
|
96 |
-
processor = AutoProcessor.from_pretrained(
|
97 |
-
"weights/icon_caption",
|
98 |
-
trust_remote_code=True,
|
99 |
-
revision="main"
|
100 |
-
)
|
101 |
-
|
102 |
-
model = AutoModelForCausalLM.from_pretrained(
|
103 |
-
"weights/icon_caption",
|
104 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
105 |
-
trust_remote_code=True,
|
106 |
-
revision="main",
|
107 |
-
attn_implementation="eager", # Avoid SDPA issues
|
108 |
-
device_map="auto" if torch.cuda.is_available() else None
|
109 |
-
)
|
110 |
-
|
111 |
-
# Add missing attribute
|
112 |
-
if not hasattr(model, '_supports_sdpa'):
|
113 |
-
model._supports_sdpa = False
|
114 |
-
|
115 |
-
caption_model_processor = {'model': model, 'processor': processor}
|
116 |
-
print("Caption model loaded with alternative method")
|
117 |
-
|
118 |
except Exception as e:
|
119 |
print(f"Critical error loading models: {e}")
|
120 |
print(traceback.format_exc())
|
121 |
-
# Try to continue with a dummy model for testing
|
122 |
caption_model_processor = None
|
123 |
-
raise
|
124 |
|
125 |
# Markdown header text
|
126 |
MARKDOWN = """
|
@@ -149,22 +234,6 @@ button:hover { transform: translateY(-2px); box-shadow: 0 4px 12px rgba(0,0,0,0.
|
|
149 |
.gr-padded { padding: 16px; }
|
150 |
"""
|
151 |
|
152 |
-
def safe_process_wrapper(*args, **kwargs):
|
153 |
-
"""Wrapper to handle SDPA attribute errors"""
|
154 |
-
try:
|
155 |
-
return process(*args, **kwargs)
|
156 |
-
except AttributeError as e:
|
157 |
-
if '_supports_sdpa' in str(e):
|
158 |
-
# Try to fix the model on the fly
|
159 |
-
global caption_model_processor
|
160 |
-
if caption_model_processor and 'model' in caption_model_processor:
|
161 |
-
model = caption_model_processor['model']
|
162 |
-
if not hasattr(model, '_supports_sdpa'):
|
163 |
-
model._supports_sdpa = False
|
164 |
-
return process(*args, **kwargs)
|
165 |
-
else:
|
166 |
-
raise
|
167 |
-
|
168 |
@spaces.GPU
|
169 |
@torch.inference_mode()
|
170 |
def process(
|
@@ -182,7 +251,7 @@ def process(
|
|
182 |
|
183 |
# Check if caption model is loaded
|
184 |
if caption_model_processor is None:
|
185 |
-
return None, "⚠️ Caption model not loaded. Please
|
186 |
|
187 |
try:
|
188 |
# Log processing parameters
|
@@ -191,7 +260,7 @@ def process(
|
|
191 |
|
192 |
# Calculate overlay ratio based on input image width
|
193 |
image_width = image_input.size[0]
|
194 |
-
box_overlay_ratio = max(0.5, min(2.0, image_width / 3200))
|
195 |
|
196 |
draw_bbox_config = {
|
197 |
'text_scale': 0.8 * box_overlay_ratio,
|
@@ -200,7 +269,7 @@ def process(
|
|
200 |
'thickness': max(int(3 * box_overlay_ratio), 1),
|
201 |
}
|
202 |
|
203 |
-
# Run OCR bounding box detection
|
204 |
try:
|
205 |
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
|
206 |
image_input,
|
@@ -230,9 +299,9 @@ def process(
|
|
230 |
print(f"OCR error: {e}, continuing with empty OCR results")
|
231 |
text, ocr_bbox = [], []
|
232 |
|
233 |
-
# Get labeled image and parsed content
|
234 |
try:
|
235 |
-
#
|
236 |
if isinstance(caption_model_processor, dict) and 'model' in caption_model_processor:
|
237 |
model = caption_model_processor['model']
|
238 |
if not hasattr(model, '_supports_sdpa'):
|
@@ -243,10 +312,10 @@ def process(
|
|
243 |
yolo_model,
|
244 |
BOX_TRESHOLD=box_threshold,
|
245 |
output_coord_in_ratio=True,
|
246 |
-
ocr_bbox=ocr_bbox if ocr_bbox else [],
|
247 |
draw_bbox_config=draw_bbox_config,
|
248 |
caption_model_processor=caption_model_processor,
|
249 |
-
ocr_text=text if text else [],
|
250 |
iou_threshold=iou_threshold,
|
251 |
imgsz=imgsz
|
252 |
)
|
@@ -254,24 +323,9 @@ def process(
|
|
254 |
if dino_labled_img is None:
|
255 |
raise ValueError("Failed to generate labeled image")
|
256 |
|
257 |
-
except AttributeError as e:
|
258 |
-
if '_supports_sdpa' in str(e):
|
259 |
-
print(f"SDPA attribute error, attempting to fix: {e}")
|
260 |
-
# Try to fix and retry
|
261 |
-
if isinstance(caption_model_processor, dict) and 'model' in caption_model_processor:
|
262 |
-
caption_model_processor['model']._supports_sdpa = False
|
263 |
-
# Retry the operation
|
264 |
-
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
|
265 |
-
image_input, yolo_model, BOX_TRESHOLD=box_threshold,
|
266 |
-
output_coord_in_ratio=True, ocr_bbox=ocr_bbox if ocr_bbox else [],
|
267 |
-
draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor,
|
268 |
-
ocr_text=text if text else [], iou_threshold=iou_threshold, imgsz=imgsz
|
269 |
-
)
|
270 |
-
else:
|
271 |
-
raise
|
272 |
except Exception as e:
|
273 |
print(f"Error in SOM processing: {e}")
|
274 |
-
|
275 |
return image_input, f"⚠️ Error during element detection: {str(e)}"
|
276 |
|
277 |
# Decode processed image from base64
|
@@ -282,7 +336,7 @@ def process(
|
|
282 |
print(f"Error decoding image: {e}")
|
283 |
return image_input, f"⚠️ Error decoding processed image: {str(e)}"
|
284 |
|
285 |
-
# Format parsed content list
|
286 |
if parsed_content_list and len(parsed_content_list) > 0:
|
287 |
parsed_text = "🎯 **Detected Elements:**\n\n"
|
288 |
for i, v in enumerate(parsed_content_list):
|
@@ -300,10 +354,14 @@ def process(
|
|
300 |
print(traceback.format_exc())
|
301 |
return None, error_msg
|
302 |
|
303 |
-
# Build Gradio UI
|
304 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="OmniParser V2 Pro") as demo:
|
305 |
gr.Markdown(MARKDOWN)
|
306 |
|
|
|
|
|
|
|
|
|
307 |
with gr.Row():
|
308 |
# Left sidebar: Upload and settings
|
309 |
with gr.Column(scale=1):
|
@@ -323,7 +381,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="OmniParser V2 Pro"
|
|
323 |
maximum=1.0,
|
324 |
step=0.01,
|
325 |
value=0.05,
|
326 |
-
info="Lower values detect more elements
|
327 |
)
|
328 |
|
329 |
iou_threshold_component = gr.Slider(
|
@@ -332,13 +390,13 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="OmniParser V2 Pro"
|
|
332 |
maximum=1.0,
|
333 |
step=0.01,
|
334 |
value=0.1,
|
335 |
-
info="Controls overlap filtering
|
336 |
)
|
337 |
|
338 |
use_paddleocr_component = gr.Checkbox(
|
339 |
label='🔤 Use PaddleOCR',
|
340 |
value=True,
|
341 |
-
info="✓ PaddleOCR
|
342 |
)
|
343 |
|
344 |
imgsz_component = gr.Slider(
|
@@ -347,7 +405,7 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="OmniParser V2 Pro"
|
|
347 |
maximum=1920,
|
348 |
step=32,
|
349 |
value=640,
|
350 |
-
info="Higher = better accuracy but slower
|
351 |
)
|
352 |
|
353 |
submit_button_component = gr.Button(
|
@@ -356,13 +414,12 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="OmniParser V2 Pro"
|
|
356 |
size='lg'
|
357 |
)
|
358 |
|
359 |
-
# Add examples section
|
360 |
gr.Markdown("### 💡 Quick Tips")
|
361 |
gr.Markdown("""
|
362 |
-
- **
|
363 |
-
- **
|
364 |
-
- **
|
365 |
-
- **Too many boxes
|
366 |
""")
|
367 |
|
368 |
# Right main area: Results tabs
|
@@ -380,13 +437,10 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="OmniParser V2 Pro"
|
|
380 |
value="*Parsed elements will appear here after processing...*",
|
381 |
elem_classes=["parsed-text"]
|
382 |
)
|
383 |
-
|
384 |
-
# Add status indicator
|
385 |
-
status_text = gr.Markdown("", visible=True)
|
386 |
|
387 |
-
# Button click event
|
388 |
submit_button_component.click(
|
389 |
-
fn=
|
390 |
inputs=[
|
391 |
image_input_component,
|
392 |
box_threshold_component,
|
@@ -398,13 +452,12 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="OmniParser V2 Pro"
|
|
398 |
show_progress=True
|
399 |
)
|
400 |
|
401 |
-
# Launch with queue support
|
402 |
if __name__ == "__main__":
|
403 |
try:
|
404 |
-
# Set environment variables
|
405 |
os.environ['TRANSFORMERS_OFFLINE'] = '0'
|
406 |
os.environ['HF_HUB_OFFLINE'] = '0'
|
407 |
-
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' # For better error messages
|
408 |
|
409 |
demo.queue(max_size=10)
|
410 |
demo.launch(
|
@@ -415,5 +468,4 @@ if __name__ == "__main__":
|
|
415 |
)
|
416 |
except Exception as e:
|
417 |
print(f"Failed to launch app: {e}")
|
418 |
-
print(traceback.format_exc())
|
419 |
-
raise
|
|
|
9 |
from huggingface_hub import snapshot_download
|
10 |
import traceback
|
11 |
import warnings
|
12 |
+
import sys
|
13 |
|
14 |
# Suppress specific warnings
|
15 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
16 |
warnings.filterwarnings("ignore", message=".*_supports_sdpa.*")
|
17 |
|
18 |
+
# CRITICAL: Fix Florence2 model before any imports
|
19 |
+
def fix_florence2_import():
|
20 |
+
"""Pre-patch the Florence2 model class before it's imported"""
|
21 |
+
import importlib.util
|
22 |
+
import types
|
23 |
+
|
24 |
+
# Create a custom import hook
|
25 |
+
class Florence2ImportHook:
|
26 |
+
def find_spec(self, fullname, path, target=None):
|
27 |
+
if "florence2" in fullname.lower() or "modeling_florence2" in fullname:
|
28 |
+
return importlib.util.spec_from_loader(fullname, Florence2Loader())
|
29 |
+
return None
|
30 |
+
|
31 |
+
class Florence2Loader:
|
32 |
+
def create_module(self, spec):
|
33 |
+
return None
|
34 |
+
|
35 |
+
def exec_module(self, module):
|
36 |
+
# Load the original module
|
37 |
+
import importlib.machinery
|
38 |
+
import importlib.util
|
39 |
+
|
40 |
+
# Find the actual florence2 module
|
41 |
+
for path in sys.path:
|
42 |
+
florence_path = os.path.join(path, "modeling_florence2.py")
|
43 |
+
if os.path.exists(florence_path):
|
44 |
+
spec = importlib.util.spec_from_file_location("modeling_florence2", florence_path)
|
45 |
+
if spec and spec.loader:
|
46 |
+
spec.loader.exec_module(module)
|
47 |
+
|
48 |
+
# Patch the module after loading
|
49 |
+
if hasattr(module, 'Florence2ForConditionalGeneration'):
|
50 |
+
original_init = module.Florence2ForConditionalGeneration.__init__
|
51 |
+
|
52 |
+
def patched_init(self, config):
|
53 |
+
# Add the missing attribute before calling super().__init__
|
54 |
+
self._supports_sdpa = False
|
55 |
+
original_init(self, config)
|
56 |
+
|
57 |
+
module.Florence2ForConditionalGeneration.__init__ = patched_init
|
58 |
+
module.Florence2ForConditionalGeneration._supports_sdpa = False
|
59 |
+
break
|
60 |
+
|
61 |
+
# Install the import hook
|
62 |
+
hook = Florence2ImportHook()
|
63 |
+
sys.meta_path.insert(0, hook)
|
64 |
+
|
65 |
+
# Apply the fix before any model imports
|
66 |
+
try:
|
67 |
+
fix_florence2_import()
|
68 |
+
except Exception as e:
|
69 |
+
print(f"Warning: Could not apply import hook: {e}")
|
70 |
+
|
71 |
+
# Alternative fix: Monkey-patch transformers before importing utils
|
72 |
+
def monkey_patch_transformers():
|
73 |
+
"""Monkey patch transformers to handle _supports_sdpa"""
|
74 |
+
try:
|
75 |
+
import transformers.modeling_utils as modeling_utils
|
76 |
+
|
77 |
+
original_check = modeling_utils.PreTrainedModel._check_and_adjust_attn_implementation
|
78 |
+
|
79 |
+
def patched_check(self, *args, **kwargs):
|
80 |
+
# Add the attribute if missing
|
81 |
+
if not hasattr(self, '_supports_sdpa'):
|
82 |
+
self._supports_sdpa = False
|
83 |
+
try:
|
84 |
+
return original_check(self, *args, **kwargs)
|
85 |
+
except AttributeError as e:
|
86 |
+
if '_supports_sdpa' in str(e):
|
87 |
+
# Return a safe default
|
88 |
+
return "eager"
|
89 |
+
raise
|
90 |
+
|
91 |
+
modeling_utils.PreTrainedModel._check_and_adjust_attn_implementation = patched_check
|
92 |
+
|
93 |
+
# Also patch the getter
|
94 |
+
original_getattr = modeling_utils.PreTrainedModel.__getattribute__
|
95 |
+
|
96 |
+
def patched_getattr(self, name):
|
97 |
+
if name == '_supports_sdpa' and not hasattr(self, '_supports_sdpa'):
|
98 |
+
return False
|
99 |
+
return original_getattr(self, name)
|
100 |
+
|
101 |
+
modeling_utils.PreTrainedModel.__getattribute__ = patched_getattr
|
102 |
+
|
103 |
+
print("Successfully patched transformers for Florence2 compatibility")
|
104 |
+
|
105 |
+
except Exception as e:
|
106 |
+
print(f"Warning: Could not patch transformers: {e}")
|
107 |
+
|
108 |
+
# Apply the monkey patch
|
109 |
+
monkey_patch_transformers()
|
110 |
+
|
111 |
+
# Now import the utils after patching
|
112 |
+
from util.utils import check_ocr_box, get_yolo_model, get_som_labeled_img
|
113 |
|
114 |
# Download repository (if not already downloaded)
|
115 |
+
repo_id = "microsoft/OmniParser-v2.0"
|
116 |
+
local_dir = "weights"
|
117 |
|
|
|
118 |
if not os.path.exists(local_dir):
|
119 |
snapshot_download(repo_id=repo_id, local_dir=local_dir)
|
120 |
print(f"Repository downloaded to: {local_dir}")
|
121 |
else:
|
122 |
print(f"Weights already exist at: {local_dir}")
|
123 |
|
124 |
+
# Custom function to load caption model with proper error handling
|
125 |
+
def load_caption_model_safe(model_name="florence2", model_name_or_path="weights/icon_caption"):
|
126 |
+
"""Safely load caption model with multiple fallback methods"""
|
127 |
+
|
128 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
129 |
+
|
130 |
+
try:
|
131 |
+
# Method 1: Try the original function with patching
|
132 |
+
from util.utils import get_caption_model_processor
|
133 |
+
return get_caption_model_processor(model_name, model_name_or_path)
|
134 |
+
except AttributeError as e:
|
135 |
+
if '_supports_sdpa' in str(e):
|
136 |
+
print(f"SDPA error detected, trying alternative loading method...")
|
137 |
+
else:
|
138 |
+
raise
|
139 |
+
|
140 |
+
# Method 2: Load directly with specific configuration
|
141 |
try:
|
142 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
|
|
143 |
|
144 |
+
print(f"Loading caption model from {model_name_or_path} with alternative method...")
|
145 |
+
|
146 |
+
# Load processor
|
147 |
+
processor = AutoProcessor.from_pretrained(
|
148 |
+
model_name_or_path,
|
149 |
+
trust_remote_code=True,
|
150 |
+
revision="main"
|
151 |
+
)
|
152 |
|
153 |
+
# Try to load model with different configurations
|
154 |
+
configs_to_try = [
|
155 |
+
{"attn_implementation": "eager", "use_cache": False},
|
156 |
+
{"use_flash_attention_2": False, "use_cache": False},
|
157 |
+
{"torch_dtype": torch.float32}, # Try float32 instead of float16
|
158 |
+
]
|
159 |
|
160 |
+
model = None
|
161 |
+
for config in configs_to_try:
|
162 |
+
try:
|
163 |
+
model = AutoModelForCausalLM.from_pretrained(
|
164 |
+
model_name_or_path,
|
165 |
+
trust_remote_code=True,
|
166 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
167 |
+
**config
|
168 |
+
)
|
169 |
|
170 |
+
# Ensure the attribute exists
|
171 |
+
if not hasattr(model, '_supports_sdpa'):
|
172 |
+
model._supports_sdpa = False
|
173 |
+
|
174 |
+
print(f"Model loaded successfully with config: {config}")
|
175 |
+
break
|
176 |
+
|
177 |
+
except Exception as e:
|
178 |
+
print(f"Failed with config {config}: {e}")
|
179 |
+
continue
|
180 |
+
|
181 |
+
if model is None:
|
182 |
+
raise RuntimeError("Could not load model with any configuration")
|
183 |
|
184 |
+
# Move to device if needed
|
185 |
+
if device.type == 'cuda' and not next(model.parameters()).is_cuda:
|
186 |
+
model = model.to(device)
|
187 |
+
|
188 |
+
return {'model': model, 'processor': processor}
|
189 |
|
190 |
except Exception as e:
|
191 |
+
print(f"Error in alternative loading: {e}")
|
192 |
+
raise
|
|
|
|
|
193 |
|
194 |
+
# Load models
|
195 |
try:
|
196 |
print("Loading YOLO model...")
|
197 |
yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
|
198 |
print("YOLO model loaded successfully")
|
199 |
|
200 |
print("Loading caption model...")
|
201 |
+
caption_model_processor = load_caption_model_safe()
|
202 |
+
print("Caption model loaded successfully")
|
203 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
except Exception as e:
|
205 |
print(f"Critical error loading models: {e}")
|
206 |
print(traceback.format_exc())
|
|
|
207 |
caption_model_processor = None
|
208 |
+
# Don't raise here, let the UI handle it
|
209 |
|
210 |
# Markdown header text
|
211 |
MARKDOWN = """
|
|
|
234 |
.gr-padded { padding: 16px; }
|
235 |
"""
|
236 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
@spaces.GPU
|
238 |
@torch.inference_mode()
|
239 |
def process(
|
|
|
251 |
|
252 |
# Check if caption model is loaded
|
253 |
if caption_model_processor is None:
|
254 |
+
return None, "⚠️ Caption model not loaded. There was an error during initialization. Please check the logs."
|
255 |
|
256 |
try:
|
257 |
# Log processing parameters
|
|
|
260 |
|
261 |
# Calculate overlay ratio based on input image width
|
262 |
image_width = image_input.size[0]
|
263 |
+
box_overlay_ratio = max(0.5, min(2.0, image_width / 3200))
|
264 |
|
265 |
draw_bbox_config = {
|
266 |
'text_scale': 0.8 * box_overlay_ratio,
|
|
|
269 |
'thickness': max(int(3 * box_overlay_ratio), 1),
|
270 |
}
|
271 |
|
272 |
+
# Run OCR bounding box detection
|
273 |
try:
|
274 |
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
|
275 |
image_input,
|
|
|
299 |
print(f"OCR error: {e}, continuing with empty OCR results")
|
300 |
text, ocr_bbox = [], []
|
301 |
|
302 |
+
# Get labeled image and parsed content
|
303 |
try:
|
304 |
+
# Ensure the model has the required attribute
|
305 |
if isinstance(caption_model_processor, dict) and 'model' in caption_model_processor:
|
306 |
model = caption_model_processor['model']
|
307 |
if not hasattr(model, '_supports_sdpa'):
|
|
|
312 |
yolo_model,
|
313 |
BOX_TRESHOLD=box_threshold,
|
314 |
output_coord_in_ratio=True,
|
315 |
+
ocr_bbox=ocr_bbox if ocr_bbox else [],
|
316 |
draw_bbox_config=draw_bbox_config,
|
317 |
caption_model_processor=caption_model_processor,
|
318 |
+
ocr_text=text if text else [],
|
319 |
iou_threshold=iou_threshold,
|
320 |
imgsz=imgsz
|
321 |
)
|
|
|
323 |
if dino_labled_img is None:
|
324 |
raise ValueError("Failed to generate labeled image")
|
325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
except Exception as e:
|
327 |
print(f"Error in SOM processing: {e}")
|
328 |
+
print(traceback.format_exc())
|
329 |
return image_input, f"⚠️ Error during element detection: {str(e)}"
|
330 |
|
331 |
# Decode processed image from base64
|
|
|
336 |
print(f"Error decoding image: {e}")
|
337 |
return image_input, f"⚠️ Error decoding processed image: {str(e)}"
|
338 |
|
339 |
+
# Format parsed content list
|
340 |
if parsed_content_list and len(parsed_content_list) > 0:
|
341 |
parsed_text = "🎯 **Detected Elements:**\n\n"
|
342 |
for i, v in enumerate(parsed_content_list):
|
|
|
354 |
print(traceback.format_exc())
|
355 |
return None, error_msg
|
356 |
|
357 |
+
# Build Gradio UI
|
358 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="OmniParser V2 Pro") as demo:
|
359 |
gr.Markdown(MARKDOWN)
|
360 |
|
361 |
+
# Check if models loaded successfully
|
362 |
+
if caption_model_processor is None:
|
363 |
+
gr.Markdown("### ⚠️ Warning: Caption model failed to load. Some features may not work.")
|
364 |
+
|
365 |
with gr.Row():
|
366 |
# Left sidebar: Upload and settings
|
367 |
with gr.Column(scale=1):
|
|
|
381 |
maximum=1.0,
|
382 |
step=0.01,
|
383 |
value=0.05,
|
384 |
+
info="Lower values detect more elements"
|
385 |
)
|
386 |
|
387 |
iou_threshold_component = gr.Slider(
|
|
|
390 |
maximum=1.0,
|
391 |
step=0.01,
|
392 |
value=0.1,
|
393 |
+
info="Controls overlap filtering"
|
394 |
)
|
395 |
|
396 |
use_paddleocr_component = gr.Checkbox(
|
397 |
label='🔤 Use PaddleOCR',
|
398 |
value=True,
|
399 |
+
info="✓ PaddleOCR | ✗ EasyOCR"
|
400 |
)
|
401 |
|
402 |
imgsz_component = gr.Slider(
|
|
|
405 |
maximum=1920,
|
406 |
step=32,
|
407 |
value=640,
|
408 |
+
info="Higher = better accuracy but slower"
|
409 |
)
|
410 |
|
411 |
submit_button_component = gr.Button(
|
|
|
414 |
size='lg'
|
415 |
)
|
416 |
|
|
|
417 |
gr.Markdown("### 💡 Quick Tips")
|
418 |
gr.Markdown("""
|
419 |
+
- **Mobile apps:** Use default settings
|
420 |
+
- **Desktop apps:** Try image size 1280
|
421 |
+
- **Complex UIs:** Lower box threshold to 0.03
|
422 |
+
- **Too many boxes:** Increase IOU threshold
|
423 |
""")
|
424 |
|
425 |
# Right main area: Results tabs
|
|
|
437 |
value="*Parsed elements will appear here after processing...*",
|
438 |
elem_classes=["parsed-text"]
|
439 |
)
|
|
|
|
|
|
|
440 |
|
441 |
+
# Button click event
|
442 |
submit_button_component.click(
|
443 |
+
fn=process,
|
444 |
inputs=[
|
445 |
image_input_component,
|
446 |
box_threshold_component,
|
|
|
452 |
show_progress=True
|
453 |
)
|
454 |
|
455 |
+
# Launch with queue support
|
456 |
if __name__ == "__main__":
|
457 |
try:
|
458 |
+
# Set environment variables
|
459 |
os.environ['TRANSFORMERS_OFFLINE'] = '0'
|
460 |
os.environ['HF_HUB_OFFLINE'] = '0'
|
|
|
461 |
|
462 |
demo.queue(max_size=10)
|
463 |
demo.launch(
|
|
|
468 |
)
|
469 |
except Exception as e:
|
470 |
print(f"Failed to launch app: {e}")
|
471 |
+
print(traceback.format_exc())
|
|