Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2025 Qwen-Image Team, The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import functools | |
| import math | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin | |
| from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers | |
| from diffusers.utils.torch_utils import maybe_allow_in_graph | |
| from diffusers.models.attention import FeedForward, AttentionMixin | |
| from diffusers.models.attention_dispatch import dispatch_attention_fn | |
| from diffusers.models.attention_processor import Attention | |
| from diffusers.models.cache_utils import CacheMixin | |
| from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
| from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def get_timestep_embedding( | |
| timesteps: torch.Tensor, | |
| embedding_dim: int, | |
| flip_sin_to_cos: bool = False, | |
| downscale_freq_shift: float = 1, | |
| scale: float = 1, | |
| max_period: int = 10000, | |
| ) -> torch.Tensor: | |
| """ | |
| This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. | |
| Args | |
| timesteps (torch.Tensor): | |
| a 1-D Tensor of N indices, one per batch element. These may be fractional. | |
| embedding_dim (int): | |
| the dimension of the output. | |
| flip_sin_to_cos (bool): | |
| Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False) | |
| downscale_freq_shift (float): | |
| Controls the delta between frequencies between dimensions | |
| scale (float): | |
| Scaling factor applied to the embeddings. | |
| max_period (int): | |
| Controls the maximum frequency of the embeddings | |
| Returns | |
| torch.Tensor: an [N x dim] Tensor of positional embeddings. | |
| """ | |
| assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" | |
| half_dim = embedding_dim // 2 | |
| exponent = -math.log(max_period) * torch.arange( | |
| start=0, end=half_dim, dtype=torch.float32, device=timesteps.device | |
| ) | |
| exponent = exponent / (half_dim - downscale_freq_shift) | |
| emb = torch.exp(exponent).to(timesteps.dtype) | |
| emb = timesteps[:, None].float() * emb[None, :] | |
| # scale embeddings | |
| emb = scale * emb | |
| # concat sine and cosine embeddings | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) | |
| # flip sine and cosine embeddings | |
| if flip_sin_to_cos: | |
| emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) | |
| # zero pad | |
| if embedding_dim % 2 == 1: | |
| emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) | |
| return emb | |
| def apply_rotary_emb_qwen( | |
| x: torch.Tensor, | |
| freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], | |
| use_real: bool = True, | |
| use_real_unbind_dim: int = -1, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings | |
| to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are | |
| reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting | |
| tensors contain rotary embeddings and are returned as real tensors. | |
| Args: | |
| x (`torch.Tensor`): | |
| Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply | |
| freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. | |
| """ | |
| if use_real: | |
| cos, sin = freqs_cis # [S, D] | |
| cos = cos[None, None] | |
| sin = sin[None, None] | |
| cos, sin = cos.to(x.device), sin.to(x.device) | |
| if use_real_unbind_dim == -1: | |
| # Used for flux, cogvideox, hunyuan-dit | |
| x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] | |
| x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) | |
| elif use_real_unbind_dim == -2: | |
| # Used for Stable Audio, OmniGen, CogView4 and Cosmos | |
| x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2] | |
| x_rotated = torch.cat([-x_imag, x_real], dim=-1) | |
| else: | |
| raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.") | |
| out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) | |
| return out | |
| else: | |
| x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) | |
| freqs_cis = freqs_cis.unsqueeze(1) | |
| x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3) | |
| return x_out.type_as(x) | |
| class QwenTimestepProjEmbeddings(nn.Module): | |
| def __init__(self, embedding_dim): | |
| super().__init__() | |
| self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000) | |
| self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | |
| def forward(self, timestep, hidden_states): | |
| timesteps_proj = self.time_proj(timestep) | |
| timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype)) # (N, D) | |
| conditioning = timesteps_emb | |
| return conditioning | |
| class QwenEmbedRope(nn.Module): | |
| def __init__(self, theta: int, axes_dim: List[int], scale_rope=False): | |
| super().__init__() | |
| self.theta = theta | |
| self.axes_dim = axes_dim | |
| pos_index = torch.arange(4096) | |
| neg_index = torch.arange(4096).flip(0) * -1 - 1 | |
| self.pos_freqs = torch.cat( | |
| [ | |
| self.rope_params(pos_index, self.axes_dim[0], self.theta), | |
| self.rope_params(pos_index, self.axes_dim[1], self.theta), | |
| self.rope_params(pos_index, self.axes_dim[2], self.theta), | |
| ], | |
| dim=1, | |
| ) | |
| self.neg_freqs = torch.cat( | |
| [ | |
| self.rope_params(neg_index, self.axes_dim[0], self.theta), | |
| self.rope_params(neg_index, self.axes_dim[1], self.theta), | |
| self.rope_params(neg_index, self.axes_dim[2], self.theta), | |
| ], | |
| dim=1, | |
| ) | |
| self.rope_cache = {} | |
| # DO NOT USING REGISTER BUFFER HERE, IT WILL CAUSE COMPLEX NUMBERS LOSE ITS IMAGINARY PART | |
| self.scale_rope = scale_rope | |
| def rope_params(self, index, dim, theta=10000): | |
| """ | |
| Args: | |
| index: [0, 1, 2, 3] 1D Tensor representing the position index of the token | |
| """ | |
| assert dim % 2 == 0 | |
| freqs = torch.outer(index, 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim))) | |
| freqs = torch.polar(torch.ones_like(freqs), freqs) | |
| return freqs | |
| def forward(self, video_fhw, txt_seq_lens, device): | |
| """ | |
| Args: video_fhw: [frame, height, width] a list of 3 integers representing the shape of the video Args: | |
| txt_length: [bs] a list of 1 integers representing the length of the text | |
| """ | |
| if self.pos_freqs.device != device: | |
| self.pos_freqs = self.pos_freqs.to(device) | |
| self.neg_freqs = self.neg_freqs.to(device) | |
| if isinstance(video_fhw, list): | |
| video_fhw = video_fhw[0] | |
| if not isinstance(video_fhw, list): | |
| video_fhw = [video_fhw] | |
| vid_freqs = [] | |
| max_vid_index = 0 | |
| for idx, fhw in enumerate(video_fhw): | |
| frame, height, width = fhw | |
| rope_key = f"{idx}_{height}_{width}" | |
| if not torch.compiler.is_compiling(): | |
| if rope_key not in self.rope_cache: | |
| self.rope_cache[rope_key] = self._compute_video_freqs(frame, height, width, idx) | |
| video_freq = self.rope_cache[rope_key] | |
| else: | |
| video_freq = self._compute_video_freqs(frame, height, width, idx) | |
| video_freq = video_freq.to(device) | |
| vid_freqs.append(video_freq) | |
| if self.scale_rope: | |
| max_vid_index = max(height // 2, width // 2, max_vid_index) | |
| else: | |
| max_vid_index = max(height, width, max_vid_index) | |
| max_len = max(txt_seq_lens) | |
| txt_freqs = self.pos_freqs[max_vid_index : max_vid_index + max_len, ...] | |
| vid_freqs = torch.cat(vid_freqs, dim=0) | |
| return vid_freqs, txt_freqs | |
| def _compute_video_freqs(self, frame, height, width, idx=0): | |
| seq_lens = frame * height * width | |
| freqs_pos = self.pos_freqs.split([x // 2 for x in self.axes_dim], dim=1) | |
| freqs_neg = self.neg_freqs.split([x // 2 for x in self.axes_dim], dim=1) | |
| freqs_frame = freqs_pos[0][idx : idx + frame].view(frame, 1, 1, -1).expand(frame, height, width, -1) | |
| if self.scale_rope: | |
| freqs_height = torch.cat([freqs_neg[1][-(height - height // 2) :], freqs_pos[1][: height // 2]], dim=0) | |
| freqs_height = freqs_height.view(1, height, 1, -1).expand(frame, height, width, -1) | |
| freqs_width = torch.cat([freqs_neg[2][-(width - width // 2) :], freqs_pos[2][: width // 2]], dim=0) | |
| freqs_width = freqs_width.view(1, 1, width, -1).expand(frame, height, width, -1) | |
| else: | |
| freqs_height = freqs_pos[1][:height].view(1, height, 1, -1).expand(frame, height, width, -1) | |
| freqs_width = freqs_pos[2][:width].view(1, 1, width, -1).expand(frame, height, width, -1) | |
| freqs = torch.cat([freqs_frame, freqs_height, freqs_width], dim=-1).reshape(seq_lens, -1) | |
| return freqs.clone().contiguous() | |
| class QwenDoubleStreamAttnProcessor2_0: | |
| """ | |
| Attention processor for Qwen double-stream architecture, matching DoubleStreamLayerMegatron logic. This processor | |
| implements joint attention computation where text and image streams are processed together. | |
| """ | |
| _attention_backend = None | |
| def __init__(self): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError( | |
| "QwenDoubleStreamAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." | |
| ) | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, # Image stream | |
| encoder_hidden_states: torch.FloatTensor = None, # Text stream | |
| encoder_hidden_states_mask: torch.FloatTensor = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| image_rotary_emb: Optional[torch.Tensor] = None, | |
| ) -> torch.FloatTensor: | |
| if encoder_hidden_states is None: | |
| raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)") | |
| seq_txt = encoder_hidden_states.shape[1] | |
| # Compute QKV for image stream (sample projections) | |
| img_query = attn.to_q(hidden_states) | |
| img_key = attn.to_k(hidden_states) | |
| img_value = attn.to_v(hidden_states) | |
| # Compute QKV for text stream (context projections) | |
| txt_query = attn.add_q_proj(encoder_hidden_states) | |
| txt_key = attn.add_k_proj(encoder_hidden_states) | |
| txt_value = attn.add_v_proj(encoder_hidden_states) | |
| # Reshape for multi-head attention | |
| img_query = img_query.unflatten(-1, (attn.heads, -1)) | |
| img_key = img_key.unflatten(-1, (attn.heads, -1)) | |
| img_value = img_value.unflatten(-1, (attn.heads, -1)) | |
| txt_query = txt_query.unflatten(-1, (attn.heads, -1)) | |
| txt_key = txt_key.unflatten(-1, (attn.heads, -1)) | |
| txt_value = txt_value.unflatten(-1, (attn.heads, -1)) | |
| # Apply QK normalization | |
| if attn.norm_q is not None: | |
| img_query = attn.norm_q(img_query) | |
| if attn.norm_k is not None: | |
| img_key = attn.norm_k(img_key) | |
| if attn.norm_added_q is not None: | |
| txt_query = attn.norm_added_q(txt_query) | |
| if attn.norm_added_k is not None: | |
| txt_key = attn.norm_added_k(txt_key) | |
| # Apply RoPE | |
| if image_rotary_emb is not None: | |
| img_freqs, txt_freqs = image_rotary_emb | |
| img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False) | |
| img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False) | |
| txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False) | |
| txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False) | |
| # Concatenate for joint attention | |
| # Order: [text, image] | |
| joint_query = torch.cat([txt_query, img_query], dim=1) | |
| joint_key = torch.cat([txt_key, img_key], dim=1) | |
| joint_value = torch.cat([txt_value, img_value], dim=1) | |
| # Compute joint attention | |
| joint_hidden_states = dispatch_attention_fn( | |
| joint_query, | |
| joint_key, | |
| joint_value, | |
| attn_mask=attention_mask, | |
| dropout_p=0.0, | |
| is_causal=False, | |
| backend=self._attention_backend, | |
| ) | |
| # Reshape back | |
| joint_hidden_states = joint_hidden_states.flatten(2, 3) | |
| joint_hidden_states = joint_hidden_states.to(joint_query.dtype) | |
| # Split attention outputs back | |
| txt_attn_output = joint_hidden_states[:, :seq_txt, :] # Text part | |
| img_attn_output = joint_hidden_states[:, seq_txt:, :] # Image part | |
| # Apply output projections | |
| img_attn_output = attn.to_out[0](img_attn_output) | |
| if len(attn.to_out) > 1: | |
| img_attn_output = attn.to_out[1](img_attn_output) # dropout | |
| txt_attn_output = attn.to_add_out(txt_attn_output) | |
| return img_attn_output, txt_attn_output | |
| class QwenImageTransformerBlock(nn.Module): | |
| def __init__( | |
| self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6 | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.num_attention_heads = num_attention_heads | |
| self.attention_head_dim = attention_head_dim | |
| # Image processing modules | |
| self.img_mod = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2 | |
| ) | |
| self.img_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) | |
| self.attn = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=None, # Enable cross attention for joint computation | |
| added_kv_proj_dim=dim, # Enable added KV projections for text stream | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| out_dim=dim, | |
| context_pre_only=False, | |
| bias=True, | |
| processor=QwenDoubleStreamAttnProcessor2_0(), | |
| qk_norm=qk_norm, | |
| eps=eps, | |
| ) | |
| self.img_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) | |
| self.img_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
| # Text processing modules | |
| self.txt_mod = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2 | |
| ) | |
| self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) | |
| # Text doesn't need separate attention - it's handled by img_attn joint computation | |
| self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps) | |
| self.txt_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
| def _modulate(self, x, mod_params): | |
| """Apply modulation to input tensor""" | |
| shift, scale, gate = mod_params.chunk(3, dim=-1) | |
| return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| encoder_hidden_states_mask: torch.Tensor, | |
| temb: torch.Tensor, | |
| image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| # Get modulation parameters for both streams | |
| img_mod_params = self.img_mod(temb) # [B, 6*dim] | |
| txt_mod_params = self.txt_mod(temb) # [B, 6*dim] | |
| # Split modulation parameters for norm1 and norm2 | |
| img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1) # Each [B, 3*dim] | |
| txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1) # Each [B, 3*dim] | |
| # Process image stream - norm1 + modulation | |
| img_normed = self.img_norm1(hidden_states) | |
| img_modulated, img_gate1 = self._modulate(img_normed, img_mod1) | |
| # Process text stream - norm1 + modulation | |
| txt_normed = self.txt_norm1(encoder_hidden_states) | |
| txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1) | |
| # Use QwenAttnProcessor2_0 for joint attention computation | |
| # This directly implements the DoubleStreamLayerMegatron logic: | |
| # 1. Computes QKV for both streams | |
| # 2. Applies QK normalization and RoPE | |
| # 3. Concatenates and runs joint attention | |
| # 4. Splits results back to separate streams | |
| joint_attention_kwargs = joint_attention_kwargs or {} | |
| attn_output = self.attn( | |
| hidden_states=img_modulated, # Image stream (will be processed as "sample") | |
| encoder_hidden_states=txt_modulated, # Text stream (will be processed as "context") | |
| encoder_hidden_states_mask=encoder_hidden_states_mask, | |
| image_rotary_emb=image_rotary_emb, | |
| **joint_attention_kwargs, | |
| ) | |
| # QwenAttnProcessor2_0 returns (img_output, txt_output) when encoder_hidden_states is provided | |
| img_attn_output, txt_attn_output = attn_output | |
| # Apply attention gates and add residual (like in Megatron) | |
| hidden_states = hidden_states + img_gate1 * img_attn_output | |
| encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output | |
| # Process image stream - norm2 + MLP | |
| img_normed2 = self.img_norm2(hidden_states) | |
| img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2) | |
| img_mlp_output = self.img_mlp(img_modulated2) | |
| hidden_states = hidden_states + img_gate2 * img_mlp_output | |
| # Process text stream - norm2 + MLP | |
| txt_normed2 = self.txt_norm2(encoder_hidden_states) | |
| txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2) | |
| txt_mlp_output = self.txt_mlp(txt_modulated2) | |
| encoder_hidden_states = encoder_hidden_states + txt_gate2 * txt_mlp_output | |
| # Clip to prevent overflow for fp16 | |
| if encoder_hidden_states.dtype == torch.float16: | |
| encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) | |
| if hidden_states.dtype == torch.float16: | |
| hidden_states = hidden_states.clip(-65504, 65504) | |
| return encoder_hidden_states, hidden_states | |
| class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin, AttentionMixin): | |
| """ | |
| The Transformer model introduced in Qwen. | |
| Args: | |
| patch_size (`int`, defaults to `2`): | |
| Patch size to turn the input data into small patches. | |
| in_channels (`int`, defaults to `64`): | |
| The number of channels in the input. | |
| out_channels (`int`, *optional*, defaults to `None`): | |
| The number of channels in the output. If not specified, it defaults to `in_channels`. | |
| num_layers (`int`, defaults to `60`): | |
| The number of layers of dual stream DiT blocks to use. | |
| attention_head_dim (`int`, defaults to `128`): | |
| The number of dimensions to use for each attention head. | |
| num_attention_heads (`int`, defaults to `24`): | |
| The number of attention heads to use. | |
| joint_attention_dim (`int`, defaults to `3584`): | |
| The number of dimensions to use for the joint attention (embedding/channel dimension of | |
| `encoder_hidden_states`). | |
| guidance_embeds (`bool`, defaults to `False`): | |
| Whether to use guidance embeddings for guidance-distilled variant of the model. | |
| axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`): | |
| The dimensions to use for the rotary positional embeddings. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| _no_split_modules = ["QwenImageTransformerBlock"] | |
| _skip_layerwise_casting_patterns = ["pos_embed", "norm"] | |
| _repeated_blocks = ["QwenImageTransformerBlock"] | |
| def __init__( | |
| self, | |
| patch_size: int = 2, | |
| in_channels: int = 64, | |
| out_channels: Optional[int] = 16, | |
| num_layers: int = 60, | |
| attention_head_dim: int = 128, | |
| num_attention_heads: int = 24, | |
| joint_attention_dim: int = 3584, | |
| guidance_embeds: bool = False, # TODO: this should probably be removed | |
| axes_dims_rope: Tuple[int, int, int] = (16, 56, 56), | |
| ): | |
| super().__init__() | |
| self.out_channels = out_channels or in_channels | |
| self.inner_dim = num_attention_heads * attention_head_dim | |
| self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True) | |
| self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim) | |
| self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6) | |
| self.img_in = nn.Linear(in_channels, self.inner_dim) | |
| self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| QwenImageTransformerBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) | |
| self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor = None, | |
| encoder_hidden_states_mask: torch.Tensor = None, | |
| timestep: torch.LongTensor = None, | |
| image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| guidance: torch.Tensor = None, # TODO: this should probably be removed | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| return_dict: bool = True, | |
| ) -> Union[torch.Tensor, Transformer2DModelOutput]: | |
| """ | |
| The [`QwenTransformer2DModel`] forward method. | |
| Args: | |
| hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`): | |
| Input `hidden_states`. | |
| encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`): | |
| Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
| encoder_hidden_states_mask (`torch.Tensor` of shape `(batch_size, text_sequence_length)`): | |
| Mask of the input conditions. | |
| timestep ( `torch.LongTensor`): | |
| Used to indicate denoising step. | |
| attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
| tuple. | |
| Returns: | |
| If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
| `tuple` where the first element is the sample tensor. | |
| """ | |
| if attention_kwargs is not None: | |
| attention_kwargs = attention_kwargs.copy() | |
| lora_scale = attention_kwargs.pop("scale", 1.0) | |
| else: | |
| lora_scale = 1.0 | |
| if USE_PEFT_BACKEND: | |
| # weight the lora layers by setting `lora_scale` for each PEFT layer | |
| scale_lora_layers(self, lora_scale) | |
| else: | |
| if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
| logger.warning( | |
| "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
| ) | |
| hidden_states = self.img_in(hidden_states) | |
| timestep = timestep.to(hidden_states.dtype) | |
| encoder_hidden_states = self.txt_norm(encoder_hidden_states) | |
| encoder_hidden_states = self.txt_in(encoder_hidden_states) | |
| if guidance is not None: | |
| guidance = guidance.to(hidden_states.dtype) * 1000 | |
| temb = ( | |
| self.time_text_embed(timestep, hidden_states) | |
| if guidance is None | |
| else self.time_text_embed(timestep, guidance, hidden_states) | |
| ) | |
| for index_block, block in enumerate(self.transformer_blocks): | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( | |
| block, | |
| hidden_states, | |
| encoder_hidden_states, | |
| encoder_hidden_states_mask, | |
| temb, | |
| image_rotary_emb, | |
| ) | |
| else: | |
| encoder_hidden_states, hidden_states = block( | |
| hidden_states=hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_hidden_states_mask=encoder_hidden_states_mask, | |
| temb=temb, | |
| image_rotary_emb=image_rotary_emb, | |
| joint_attention_kwargs=attention_kwargs, | |
| ) | |
| # Use only the image part (hidden_states) from the dual-stream blocks | |
| hidden_states = self.norm_out(hidden_states, temb) | |
| output = self.proj_out(hidden_states) | |
| if USE_PEFT_BACKEND: | |
| # remove `lora_scale` from each PEFT layer | |
| unscale_lora_layers(self, lora_scale) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer2DModelOutput(sample=output) | |