import os huggingface_token = os.getenv("HF_TOKEN") if not huggingface_token: print("Warning: Hugging Face token is not set.") import gradio as gr import json import logging import torch from PIL import Image import spaces from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images from diffusers.utils import load_image from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download import copy import random import time import requests import pandas as pd from transformers import pipeline from gradio_imageslider import ImageSlider import numpy as np import warnings try: translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu", token=huggingface_token) except Exception as e: print(f"Translation model load failed: {str(e)}") # If the translation model fails to load, return the original text def translator(text, max_length=512): return [{'translation_text': text}] # Load prompts for randomization df = pd.read_csv('prompts.csv', header=None) prompt_values = df.values.flatten() # Load LoRAs from JSON file with open('loras.json', 'r') as f: loras = json.load(f) # Load base FLUX model dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" base_model = "black-forest-labs/FLUX.1-dev" pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device) # Settings for LoRA taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) # Set up image-to-image pipeline pipe_i2i = AutoPipelineForImage2Image.from_pretrained( base_model, vae=good_vae, transformer=pipe.transformer, text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer, text_encoder_2=pipe.text_encoder_2, tokenizer_2=pipe.tokenizer_2, torch_dtype=dtype ).to(device) MAX_SEED = 2**32 - 1 MAX_PIXEL_BUDGET = 1024 * 1024 pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") def download_file(url, directory=None): if directory is None: directory = os.getcwd() # Use current working directory if not specified # Get the filename from the URL filename = url.split('/')[-1] # Full path for the downloaded file filepath = os.path.join(directory, filename) # Download the file response = requests.get(url) response.raise_for_status() # Raise an exception for bad status codes # Write the content to the file with open(filepath, 'wb') as file: file.write(response.content) return filepath def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height): selected_index = evt.index selected_indices = selected_indices or [] if selected_index in selected_indices: selected_indices.remove(selected_index) else: if len(selected_indices) < 3: selected_indices.append(selected_index) else: gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.") return gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update() selected_info_1 = "Select LoRA 1" selected_info_2 = "Select LoRA 2" selected_info_3 = "Select LoRA 3" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 1.15 lora_image_1 = None lora_image_2 = None lora_image_3 = None if len(selected_indices) >= 1: lora1 = loras_state[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = loras_state[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" lora_image_2 = lora2['image'] if len(selected_indices) >= 3: lora3 = loras_state[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" lora_image_3 = lora3['image'] if selected_indices: last_selected_lora = loras_state[selected_indices[-1]] new_placeholder = f"Type a prompt for {last_selected_lora['title']}" else: new_placeholder = "Type a prompt after selecting a LoRA" return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3 def remove_lora(selected_indices, loras_state, index_to_remove): if len(selected_indices) > index_to_remove: selected_indices.pop(index_to_remove) selected_info_1 = "Select LoRA 1" selected_info_2 = "Select LoRA 2" selected_info_3 = "Select LoRA 3" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 1.15 lora_image_1 = None lora_image_2 = None lora_image_3 = None for i, idx in enumerate(selected_indices): lora = loras_state[idx] if i == 0: selected_info_1 = f"### LoRA 1 Selected: [{lora['title']}]({lora['repo']}) ✨" lora_image_1 = lora['image'] elif i == 1: selected_info_2 = f"### LoRA 2 Selected: [{lora['title']}]({lora['repo']}) ✨" lora_image_2 = lora['image'] elif i == 2: selected_info_3 = f"### LoRA 3 Selected: [{lora['title']}]({lora['repo']}) ✨" lora_image_3 = lora['image'] return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3 def remove_lora_1(selected_indices, loras_state): return remove_lora(selected_indices, loras_state, 0) def remove_lora_2(selected_indices, loras_state): return remove_lora(selected_indices, loras_state, 1) def remove_lora_3(selected_indices, loras_state): return remove_lora(selected_indices, loras_state, 2) def randomize_loras(selected_indices, loras_state): try: if len(loras_state) < 3: raise gr.Error("Not enough LoRAs to randomize.") selected_indices = random.sample(range(len(loras_state)), 3) lora1 = loras_state[selected_indices[0]] lora2 = loras_state[selected_indices[1]] lora3 = loras_state[selected_indices[2]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 1.15 lora_image_1 = lora1.get('image', 'path/to/default/image.png') lora_image_2 = lora2.get('image', 'path/to/default/image.png') lora_image_3 = lora3.get('image', 'path/to/default/image.png') random_prompt = random.choice(prompt_values) return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, random_prompt except Exception as e: print(f"Error in randomize_loras: {str(e)}") return "Error", "Error", "Error", [], 1.15, 1.15, 1.15, 'path/to/default/image.png', 'path/to/default/image.png', 'path/to/default/image.png', "" def add_custom_lora(custom_lora, selected_indices, current_loras): if custom_lora: try: title, repo, path, trigger_word, image = check_custom_model(custom_lora) print(f"Loaded custom LoRA: {repo}") existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None) if existing_item_index is None: if repo.endswith(".safetensors") and repo.startswith("http"): repo = download_file(repo) new_item = { "image": image if image else "/home/user/app/custom.png", "title": title, "repo": repo, "weights": path, "trigger_word": trigger_word } print(f"New LoRA: {new_item}") existing_item_index = len(current_loras) current_loras.append(new_item) # Update gallery gallery_items = [(item["image"], item["title"]) for item in current_loras] # Update selected_indices if there's room if len(selected_indices) < 3: selected_indices.append(existing_item_index) else: gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.") # Update selected_info and images selected_info_1 = "Select a LoRA 1" selected_info_2 = "Select a LoRA 2" selected_info_3 = "Select a LoRA 3" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 1.15 lora_image_1 = None lora_image_2 = None lora_image_3 = None if len(selected_indices) >= 1: lora1 = current_loras[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨" lora_image_1 = lora1['image'] if lora1['image'] else None if len(selected_indices) >= 2: lora2 = current_loras[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨" lora_image_2 = lora2['image'] if lora2['image'] else None if len(selected_indices) >= 3: lora3 = current_loras[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: {lora3['title']} ✨" lora_image_3 = lora3['image'] if lora3['image'] else None print("Finished adding custom LoRA") return ( current_loras, gr.update(value=gallery_items), selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, gr.update(visible=True) # Make "Remove Custom LoRA" button visible ) except Exception as e: print(e) gr.Warning(str(e)) return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update() else: return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update() def remove_custom_lora(selected_indices, current_loras): if current_loras: custom_lora_repo = current_loras[-1]['repo'] # Remove from loras list current_loras = current_loras[:-1] # Remove from selected_indices if selected custom_lora_index = len(current_loras) if custom_lora_index in selected_indices: selected_indices.remove(custom_lora_index) # Update gallery gallery_items = [(item["image"], item["title"]) for item in current_loras] # Update selected_info and images selected_info_1 = "Select a LoRA 1" selected_info_2 = "Select a LoRA 2" selected_info_3 = "Select a LoRA 3" lora_scale_1 = 1.15 lora_scale_2 = 1.15 lora_scale_3 = 1.15 lora_image_1 = None lora_image_2 = None lora_image_3 = None if len(selected_indices) >= 1: lora1 = current_loras[selected_indices[0]] selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨" lora_image_1 = lora1['image'] if len(selected_indices) >= 2: lora2 = current_loras[selected_indices[1]] selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨" lora_image_2 = lora2['image'] if len(selected_indices) >= 3: lora3 = current_loras[selected_indices[2]] selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨" lora_image_3 = lora3['image'] # If no custom LoRA remains, hide the "Remove Custom LoRA" button remove_button_visibility = gr.update(visible=False) if not any("custom" in lora['repo'] for lora in current_loras) else gr.update(visible=True) return ( current_loras, gr.update(value=gallery_items), selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, remove_button_visibility ) @spaces.GPU(duration=75) def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress): print("Generating image...") pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(seed) with calculateDuration("Generating image"): # Generate image iteratively for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt_mash, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": 1.0}, output_type="pil", good_vae=good_vae, ): yield img @spaces.GPU(duration=75) def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed): pipe_i2i.to("cuda") generator = torch.Generator(device="cuda").manual_seed(seed) image_input = load_image(image_input_path) final_image = pipe_i2i( prompt=prompt_mash, image=image_input, strength=image_strength, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": 1.0}, output_type="pil", ).images[0] return final_image def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)): try: # Detect and translate Korean text if present if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt): try: translated = translator(prompt, max_length=512)[0]['translation_text'] print(f"Original prompt: {prompt}") print(f"Translated prompt: {translated}") prompt = translated except Exception as e: print(f"Translation failed: {str(e)}") # Use the original prompt if translation fails if not selected_indices: raise gr.Error("You must select at least one LoRA before proceeding.") selected_loras = [loras_state[idx] for idx in selected_indices] # Build the prompt with trigger words prepends = [] appends = [] for lora in selected_loras: trigger_word = lora.get('trigger_word', '') if trigger_word: if lora.get("trigger_position") == "prepend": prepends.append(trigger_word) else: appends.append(trigger_word) prompt_mash = " ".join(prepends + [prompt] + appends) print("Prompt Mash: ", prompt_mash) # Unload previous LoRA weights with calculateDuration("Unloading LoRA"): pipe.unload_lora_weights() pipe_i2i.unload_lora_weights() print(f"Active adapters before loading: {pipe.get_active_adapters()}") # Load LoRA weights with respective scales lora_names = [] lora_weights = [] with calculateDuration("Loading LoRA weights"): for idx, lora in enumerate(selected_loras): try: lora_name = f"lora_{idx}" lora_path = lora['repo'] weight_name = lora.get("weights") print(f"Loading LoRA {lora_name} from {lora_path}") if image_input is not None: if weight_name: pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=lora_name) else: pipe_i2i.load_lora_weights(lora_path, adapter_name=lora_name) else: if weight_name: pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=lora_name) else: pipe.load_lora_weights(lora_path, adapter_name=lora_name) lora_names.append(lora_name) lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2 if idx == 1 else lora_scale_3) except Exception as e: print(f"Failed to load LoRA {lora_name}: {str(e)}") print("Loaded LoRAs:", lora_names) print("Adapter weights:", lora_weights) if lora_names: if image_input is not None: pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights) else: pipe.set_adapters(lora_names, adapter_weights=lora_weights) else: print("No LoRAs were successfully loaded.") return None, seed, gr.update(visible=False) print(f"Active adapters after loading: {pipe.get_active_adapters()}") # Randomize seed if requested with calculateDuration("Randomizing seed"): if randomize_seed: seed = random.randint(0, MAX_SEED) if image_input is not None: final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed) else: image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress) final_image = None step_counter = 0 for image in image_generator: step_counter += 1 final_image = image progress_bar = f'
' yield image, seed, gr.update(value=progress_bar, visible=True) if final_image is None: raise Exception("Failed to generate image") return final_image, seed, gr.update(visible=False) except Exception as e: print(f"Error in run_lora: {str(e)}") return None, seed, gr.update(visible=False) run_lora.zerogpu = True def get_huggingface_safetensors(link): split_link = link.split("/") if len(split_link) == 2: model_card = ModelCard.load(link) base_model = model_card.data.get("base_model") print(f"Base model: {base_model}") if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]: raise Exception("Not a FLUX LoRA!") image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) trigger_word = model_card.data.get("instance_prompt", "") image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None fs = HfFileSystem() safetensors_name = None try: list_of_files = fs.ls(link, detail=False) for file in list_of_files: if file.endswith(".safetensors"): safetensors_name = file.split("/")[-1] if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")): image_elements = file.split("/") image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" except Exception as e: print(e) raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA") if not safetensors_name: raise gr.Error("No *.safetensors file found in the repository") return split_link[1], link, safetensors_name, trigger_word, image_url else: raise gr.Error("Invalid Hugging Face repository link") def check_custom_model(link): if link.endswith(".safetensors"): # Treat as direct link to the LoRA weights title = os.path.basename(link) repo = link path = None # No specific weight name trigger_word = "" image_url = None return title, repo, path, trigger_word, image_url elif link.startswith("https://"): if "huggingface.co" in link: link_split = link.split("huggingface.co/") return get_huggingface_safetensors(link_split[1]) else: raise Exception("Unsupported URL") else: # Assume it's a Hugging Face model path return get_huggingface_safetensors(link) def update_history(new_image, history): """Updates the history gallery with the new image.""" if history is None: history = [] if new_image is not None: history.insert(0, new_image) return history # Custom theme configuration custom_theme = gr.themes.Base( primary_hue="blue", secondary_hue="purple", neutral_hue="slate", ).set( button_primary_background_fill="*primary_500", button_primary_background_fill_dark="*primary_600", button_primary_background_fill_hover="*primary_400", button_primary_border_color="*primary_500", button_primary_border_color_dark="*primary_600", button_primary_text_color="white", button_primary_text_color_dark="white", button_secondary_background_fill="*neutral_100", button_secondary_background_fill_dark="*neutral_700", button_secondary_background_fill_hover="*neutral_50", button_secondary_text_color="*neutral_800", button_secondary_text_color_dark="white", background_fill_primary="*neutral_50", background_fill_primary_dark="*neutral_900", block_background_fill="white", block_background_fill_dark="*neutral_800", block_label_background_fill="*primary_500", block_label_background_fill_dark="*primary_600", block_label_text_color="white", block_label_text_color_dark="white", block_title_text_color="*neutral_800", block_title_text_color_dark="white", input_background_fill="white", input_background_fill_dark="*neutral_800", input_border_color="*neutral_200", input_border_color_dark="*neutral_700", input_placeholder_color="*neutral_400", input_placeholder_color_dark="*neutral_400", shadow_spread="8px", shadow_inset="0px 2px 4px 0px rgba(0,0,0,0.05)" ) css = ''' /* Basic button and component styles */ #gen_btn { height: 100% } #title { text-align: center } #title h1 { font-size: 3em; display: inline-flex; align-items: center } #title img { width: 100px; margin-right: 0.25em } #lora_list { background: var(--block-background-fill); padding: 0 1em 0.3em; font-size: 90% } /* Custom LoRA card styles */ .custom_lora_card { margin-bottom: 1em } .card_internal { display: flex; height: 100px; margin-top: 0.5em } .card_internal img { margin-right: 1em } /* Utility classes */ .styler { --form-gap-width: 0px !important } /* Progress bar styles */ #progress { height: 30px; width: 90% !important; margin: 0 auto !important; } #progress .generating { display: none } .progress-container { width: 100%; height: 30px; background-color: #f0f0f0; border-radius: 15px; overflow: hidden; margin-bottom: 20px } .progress-bar { height: 100%; background-color: #4f46e5; width: calc(var(--current) / var(--total) * 100%); transition: width 0.5s ease-in-out } /* Component-specific styles */ #component-8, .button_total { height: 100%; align-self: stretch; } #loaded_loras [data-testid="block-info"] { font-size: 80% } #custom_lora_structure { background: var(--block-background-fill) } #custom_lora_btn { margin-top: auto; margin-bottom: 11px } #random_btn { font-size: 300% } #component-11 { align-self: stretch; } /* Gallery main styles */ #lora_gallery { margin: 20px 0; padding: 10px; border: 1px solid #ddd; border-radius: 12px; background: linear-gradient(to bottom right, #ffffff, #f8f9fa); width: 100% !important; height: 800px !important; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); display: block !important; } /* Gallery grid styles */ #gallery { display: grid !important; grid-template-columns: repeat(10, 1fr) !important; gap: 10px !important; padding: 10px !important; width: 100% !important; height: 100% !important; overflow-y: auto !important; max-width: 100% !important; } /* Gallery item styles */ .gallery-item { position: relative !important; width: 100% !important; aspect-ratio: 1 !important; margin: 0 !important; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); transition: transform 0.3s ease, box-shadow 0.3s ease; border-radius: 12px; overflow: hidden; } .gallery-item img { width: 100% !important; height: 100% !important; object-fit: cover !important; border-radius: 12px !important; } /* Gallery grid wrapper */ .wrap, .svelte-w6dy5e { display: grid !important; grid-template-columns: repeat(10, 1fr) !important; gap: 10px !important; width: 100% !important; max-width: 100% !important; } /* Common container styles */ .container, .content, .block, .contain { width: 100% !important; max-width: 100% !important; margin: 0 !important; padding: 0 !important; } .row { width: 100% !important; margin: 0 !important; padding: 0 !important; } /* Button styles */ .button_total { box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06); transition: all 0.3s ease; } .button_total:hover { transform: translateY(-2px); box-shadow: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -2px rgba(0, 0, 0, 0.05); } /* Input field styles */ input, textarea { box-shadow: inset 0 2px 4px 0 rgba(0, 0, 0, 0.06); transition: all 0.3s ease; } input:focus, textarea:focus { box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5); } /* Component border-radius */ .gradio-container .input, .gradio-container .button, .gradio-container .block { border-radius: 12px; } /* Scrollbar styles */ #gallery::-webkit-scrollbar { width: 8px; } #gallery::-webkit-scrollbar-track { background: #f1f1f1; border-radius: 4px; } #gallery::-webkit-scrollbar-thumb { background: #888; border-radius: 4px; } #gallery::-webkit-scrollbar-thumb:hover { background: #555; } /* Flex container */ .flex { width: 100% !important; max-width: 100% !important; display: flex !important; } /* Svelte specific classes */ .svelte-1p9xokt { width: 100% !important; max-width: 100% !important; } /* Hide Footer */ #footer { visibility: hidden; } /* Generated image and container styles */ #result_column, #result_column > div { display: flex !important; flex-direction: column !important; align-items: flex-start !important; width: 100% !important; margin: 0 !important; } .generated-image, .generated-image > div { display: flex !important; justify-content: flex-start !important; align-items: flex-start !important; width: 90% !important; max-width: 768px !important; margin: 0 !important; margin-left: 20px !important; } .generated-image img { margin: 0 !important; display: block !important; max-width: 100% !important; } /* History gallery left alignment */ .history-gallery { display: flex !important; justify-content: flex-start !important; width: 90% !important; max-width: 90% !important; margin: 0 !important; margin-left: 20px !important; } ''' with gr.Blocks(theme=custom_theme, css=css, delete_cache=(60, 3600)) as app: loras_state = gr.State(loras) selected_indices = gr.State([]) gr.Markdown( """ # GiniGen: Multi-LoRA (Image Training) Integrated Generation Model ### Instructions: Select a model from the gallery (up to 3 models)    |    Enter your prompt in Korean or English    |    Click the **Generate** button """ ) with gr.Row(elem_id="lora_gallery", equal_height=True): gallery = gr.Gallery( value=[(item["image"], item["title"]) for item in loras], label="LoRA Explorer Gallery", columns=11, elem_id="gallery", height=800, object_fit="cover", show_label=True, allow_preview=False, show_share_button=False, container=True, preview=False ) with gr.Tab(label="Generate"): # Prompt and Generate Button with gr.Row(): with gr.Column(scale=3): prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") with gr.Column(scale=1): generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"]) # LoRA Selection Area with gr.Row(elem_id="loaded_loras"): # Randomize Button with gr.Column(scale=1, min_width=25): randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn") # LoRA 1 with gr.Column(scale=8): with gr.Row(): with gr.Column(scale=0, min_width=50): lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) with gr.Column(scale=3, min_width=100): selected_info_1 = gr.Markdown("Select a LoRA 1") with gr.Column(scale=5, min_width=50): lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15) with gr.Row(): remove_button_1 = gr.Button("Remove", size="sm") # LoRA 2 with gr.Column(scale=8): with gr.Row(): with gr.Column(scale=0, min_width=50): lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) with gr.Column(scale=3, min_width=100): selected_info_2 = gr.Markdown("Select a LoRA 2") with gr.Column(scale=5, min_width=50): lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15) with gr.Row(): remove_button_2 = gr.Button("Remove", size="sm") # LoRA 3 with gr.Column(scale=8): with gr.Row(): with gr.Column(scale=0, min_width=50): lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) with gr.Column(scale=3, min_width=100): selected_info_3 = gr.Markdown("Select a LoRA 3") with gr.Column(scale=5, min_width=50): lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.01, value=1.15) with gr.Row(): remove_button_3 = gr.Button("Remove", size="sm") # Result and Progress Area with gr.Column(elem_id="result_column"): progress_bar = gr.Markdown(elem_id="progress", visible=False) with gr.Column(elem_id="result_box"): result = gr.Image( label="Generated Image", interactive=False, elem_classes=["generated-image"], container=True, elem_id="result_image", width="100%" ) with gr.Accordion("History", open=False): history_gallery = gr.Gallery( label="History", columns=6, object_fit="contain", interactive=False, elem_classes=["history-gallery"] ) # Advanced Settings with gr.Row(): with gr.Accordion("Advanced Settings", open=False): with gr.Row(): input_image = gr.Image(label="Input Image", type="filepath") image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) with gr.Column(): with gr.Row(): cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) with gr.Row(): randomize_seed = gr.Checkbox(True, label="Randomize Seed") seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) # Custom LoRA Section with gr.Column(): with gr.Group(): with gr.Row(elem_id="custom_lora_structure"): custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="ginipick/flux-lora-eric-cat", scale=3, min_width=150) add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150) remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False) gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") # Event Handlers gallery.select( update_selection, inputs=[selected_indices, loras_state, width, height], outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3] ) remove_button_1.click( remove_lora_1, inputs=[selected_indices, loras_state], outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3] ) remove_button_2.click( remove_lora_2, inputs=[selected_indices, loras_state], outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3] ) remove_button_3.click( remove_lora_3, inputs=[selected_indices, loras_state], outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3] ) randomize_button.click( randomize_loras, inputs=[selected_indices, loras_state], outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, prompt] ) add_custom_lora_button.click( add_custom_lora, inputs=[custom_lora, selected_indices, loras_state], outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, remove_custom_lora_button] ) remove_custom_lora_button.click( remove_custom_lora, inputs=[selected_indices, loras_state], outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, remove_custom_lora_button] ) gr.on( triggers=[generate_button.click, prompt.submit], fn=run_lora, inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed, width, height, loras_state], outputs=[result, seed, progress_bar] ).then( fn=lambda x, history: update_history(x, history) if x is not None else history, inputs=[result, history_gallery], outputs=history_gallery ) if __name__ == "__main__": app.queue(max_size=20) app.launch(debug=True)