Spaces:
Running
on
Zero
Running
on
Zero
Delete model.py
Browse files
model.py
DELETED
@@ -1,930 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
# --------------------------------------------------------
|
7 |
-
# References:
|
8 |
-
# GLIDE: https://github.com/openai/glide-text2im
|
9 |
-
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
|
10 |
-
# --------------------------------------------------------
|
11 |
-
|
12 |
-
import math
|
13 |
-
from typing import List, Optional, Tuple
|
14 |
-
|
15 |
-
from flash_attn import flash_attn_varlen_func
|
16 |
-
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
17 |
-
import torch
|
18 |
-
import torch.nn as nn
|
19 |
-
import torch.nn.functional as F
|
20 |
-
|
21 |
-
from .components import RMSNorm
|
22 |
-
|
23 |
-
|
24 |
-
def modulate(x, scale):
|
25 |
-
return x * (1 + scale.unsqueeze(1))
|
26 |
-
|
27 |
-
|
28 |
-
#############################################################################
|
29 |
-
# Embedding Layers for Timesteps and Class Labels #
|
30 |
-
#############################################################################
|
31 |
-
|
32 |
-
|
33 |
-
class TimestepEmbedder(nn.Module):
|
34 |
-
"""
|
35 |
-
Embeds scalar timesteps into vector representations.
|
36 |
-
"""
|
37 |
-
|
38 |
-
def __init__(self, hidden_size, frequency_embedding_size=256):
|
39 |
-
super().__init__()
|
40 |
-
self.mlp = nn.Sequential(
|
41 |
-
nn.Linear(
|
42 |
-
frequency_embedding_size,
|
43 |
-
hidden_size,
|
44 |
-
bias=True,
|
45 |
-
),
|
46 |
-
nn.SiLU(),
|
47 |
-
nn.Linear(
|
48 |
-
hidden_size,
|
49 |
-
hidden_size,
|
50 |
-
bias=True,
|
51 |
-
),
|
52 |
-
)
|
53 |
-
nn.init.normal_(self.mlp[0].weight, std=0.02)
|
54 |
-
nn.init.zeros_(self.mlp[0].bias)
|
55 |
-
nn.init.normal_(self.mlp[2].weight, std=0.02)
|
56 |
-
nn.init.zeros_(self.mlp[2].bias)
|
57 |
-
|
58 |
-
self.frequency_embedding_size = frequency_embedding_size
|
59 |
-
|
60 |
-
@staticmethod
|
61 |
-
def timestep_embedding(t, dim, max_period=10000):
|
62 |
-
"""
|
63 |
-
Create sinusoidal timestep embeddings.
|
64 |
-
:param t: a 1-D Tensor of N indices, one per batch element.
|
65 |
-
These may be fractional.
|
66 |
-
:param dim: the dimension of the output.
|
67 |
-
:param max_period: controls the minimum frequency of the embeddings.
|
68 |
-
:return: an (N, D) Tensor of positional embeddings.
|
69 |
-
"""
|
70 |
-
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
71 |
-
half = dim // 2
|
72 |
-
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
73 |
-
device=t.device
|
74 |
-
)
|
75 |
-
args = t[:, None].float() * freqs[None]
|
76 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
77 |
-
if dim % 2:
|
78 |
-
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
79 |
-
return embedding
|
80 |
-
|
81 |
-
def forward(self, t):
|
82 |
-
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
83 |
-
t_emb = self.mlp(t_freq.to(self.mlp[0].weight.dtype))
|
84 |
-
return t_emb
|
85 |
-
|
86 |
-
|
87 |
-
#############################################################################
|
88 |
-
# Core NextDiT Model #
|
89 |
-
#############################################################################
|
90 |
-
|
91 |
-
|
92 |
-
class JointAttention(nn.Module):
|
93 |
-
"""Multi-head attention module."""
|
94 |
-
|
95 |
-
def __init__(
|
96 |
-
self,
|
97 |
-
dim: int,
|
98 |
-
n_heads: int,
|
99 |
-
n_kv_heads: Optional[int],
|
100 |
-
qk_norm: bool,
|
101 |
-
):
|
102 |
-
"""
|
103 |
-
Initialize the Attention module.
|
104 |
-
|
105 |
-
Args:
|
106 |
-
dim (int): Number of input dimensions.
|
107 |
-
n_heads (int): Number of heads.
|
108 |
-
n_kv_heads (Optional[int]): Number of kv heads, if using GQA.
|
109 |
-
|
110 |
-
"""
|
111 |
-
super().__init__()
|
112 |
-
self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
|
113 |
-
self.n_local_heads = n_heads
|
114 |
-
self.n_local_kv_heads = self.n_kv_heads
|
115 |
-
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
116 |
-
self.head_dim = dim // n_heads
|
117 |
-
|
118 |
-
self.qkv = nn.Linear(
|
119 |
-
dim,
|
120 |
-
(n_heads + self.n_kv_heads + self.n_kv_heads) * self.head_dim,
|
121 |
-
bias=False,
|
122 |
-
)
|
123 |
-
nn.init.xavier_uniform_(self.qkv.weight)
|
124 |
-
|
125 |
-
self.out = nn.Linear(
|
126 |
-
n_heads * self.head_dim,
|
127 |
-
dim,
|
128 |
-
bias=False,
|
129 |
-
)
|
130 |
-
nn.init.xavier_uniform_(self.out.weight)
|
131 |
-
|
132 |
-
if qk_norm:
|
133 |
-
self.q_norm = RMSNorm(self.head_dim)
|
134 |
-
self.k_norm = RMSNorm(self.head_dim)
|
135 |
-
else:
|
136 |
-
self.q_norm = self.k_norm = nn.Identity()
|
137 |
-
|
138 |
-
@staticmethod
|
139 |
-
def apply_rotary_emb(
|
140 |
-
x_in: torch.Tensor,
|
141 |
-
freqs_cis: torch.Tensor,
|
142 |
-
) -> torch.Tensor:
|
143 |
-
"""
|
144 |
-
Apply rotary embeddings to input tensors using the given frequency
|
145 |
-
tensor.
|
146 |
-
|
147 |
-
This function applies rotary embeddings to the given query 'xq' and
|
148 |
-
key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The
|
149 |
-
input tensors are reshaped as complex numbers, and the frequency tensor
|
150 |
-
is reshaped for broadcasting compatibility. The resulting tensors
|
151 |
-
contain rotary embeddings and are returned as real tensors.
|
152 |
-
|
153 |
-
Args:
|
154 |
-
x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings.
|
155 |
-
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex
|
156 |
-
exponentials.
|
157 |
-
|
158 |
-
Returns:
|
159 |
-
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor
|
160 |
-
and key tensor with rotary embeddings.
|
161 |
-
"""
|
162 |
-
with torch.cuda.amp.autocast(enabled=False):
|
163 |
-
x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2))
|
164 |
-
freqs_cis = freqs_cis.unsqueeze(2)
|
165 |
-
x_out = torch.view_as_real(x * freqs_cis).flatten(3)
|
166 |
-
return x_out.type_as(x_in)
|
167 |
-
|
168 |
-
# copied from huggingface modeling_llama.py
|
169 |
-
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
170 |
-
def _get_unpad_data(attention_mask):
|
171 |
-
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
172 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
173 |
-
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
174 |
-
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
175 |
-
return (
|
176 |
-
indices,
|
177 |
-
cu_seqlens,
|
178 |
-
max_seqlen_in_batch,
|
179 |
-
)
|
180 |
-
|
181 |
-
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
182 |
-
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
183 |
-
|
184 |
-
key_layer = index_first_axis(
|
185 |
-
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
186 |
-
indices_k,
|
187 |
-
)
|
188 |
-
value_layer = index_first_axis(
|
189 |
-
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
190 |
-
indices_k,
|
191 |
-
)
|
192 |
-
if query_length == kv_seq_len:
|
193 |
-
query_layer = index_first_axis(
|
194 |
-
query_layer.reshape(batch_size * kv_seq_len, self.n_local_heads, head_dim),
|
195 |
-
indices_k,
|
196 |
-
)
|
197 |
-
cu_seqlens_q = cu_seqlens_k
|
198 |
-
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
199 |
-
indices_q = indices_k
|
200 |
-
elif query_length == 1:
|
201 |
-
max_seqlen_in_batch_q = 1
|
202 |
-
cu_seqlens_q = torch.arange(
|
203 |
-
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
204 |
-
) # There is a memcpy here, that is very bad.
|
205 |
-
indices_q = cu_seqlens_q[:-1]
|
206 |
-
query_layer = query_layer.squeeze(1)
|
207 |
-
else:
|
208 |
-
# The -q_len: slice assumes left padding.
|
209 |
-
attention_mask = attention_mask[:, -query_length:]
|
210 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
211 |
-
|
212 |
-
return (
|
213 |
-
query_layer,
|
214 |
-
key_layer,
|
215 |
-
value_layer,
|
216 |
-
indices_q,
|
217 |
-
(cu_seqlens_q, cu_seqlens_k),
|
218 |
-
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
219 |
-
)
|
220 |
-
|
221 |
-
def forward(
|
222 |
-
self,
|
223 |
-
x: torch.Tensor,
|
224 |
-
x_mask: torch.Tensor,
|
225 |
-
freqs_cis: torch.Tensor,
|
226 |
-
) -> torch.Tensor:
|
227 |
-
"""
|
228 |
-
|
229 |
-
Args:
|
230 |
-
x:
|
231 |
-
x_mask:
|
232 |
-
freqs_cis:
|
233 |
-
|
234 |
-
Returns:
|
235 |
-
|
236 |
-
"""
|
237 |
-
bsz, seqlen, _ = x.shape
|
238 |
-
dtype = x.dtype
|
239 |
-
|
240 |
-
xq, xk, xv = torch.split(
|
241 |
-
self.qkv(x),
|
242 |
-
[
|
243 |
-
self.n_local_heads * self.head_dim,
|
244 |
-
self.n_local_kv_heads * self.head_dim,
|
245 |
-
self.n_local_kv_heads * self.head_dim,
|
246 |
-
],
|
247 |
-
dim=-1,
|
248 |
-
)
|
249 |
-
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
250 |
-
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
251 |
-
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
252 |
-
xq = self.q_norm(xq)
|
253 |
-
xk = self.k_norm(xk)
|
254 |
-
xq = JointAttention.apply_rotary_emb(xq, freqs_cis=freqs_cis)
|
255 |
-
xk = JointAttention.apply_rotary_emb(xk, freqs_cis=freqs_cis)
|
256 |
-
xq, xk = xq.to(dtype), xk.to(dtype)
|
257 |
-
|
258 |
-
softmax_scale = math.sqrt(1 / self.head_dim)
|
259 |
-
|
260 |
-
if dtype in [torch.float16, torch.bfloat16]:
|
261 |
-
# begin var_len flash attn
|
262 |
-
(
|
263 |
-
query_states,
|
264 |
-
key_states,
|
265 |
-
value_states,
|
266 |
-
indices_q,
|
267 |
-
cu_seq_lens,
|
268 |
-
max_seq_lens,
|
269 |
-
) = self._upad_input(xq, xk, xv, x_mask, seqlen)
|
270 |
-
|
271 |
-
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
272 |
-
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
273 |
-
|
274 |
-
attn_output_unpad = flash_attn_varlen_func(
|
275 |
-
query_states,
|
276 |
-
key_states,
|
277 |
-
value_states,
|
278 |
-
cu_seqlens_q=cu_seqlens_q,
|
279 |
-
cu_seqlens_k=cu_seqlens_k,
|
280 |
-
max_seqlen_q=max_seqlen_in_batch_q,
|
281 |
-
max_seqlen_k=max_seqlen_in_batch_k,
|
282 |
-
dropout_p=0.0,
|
283 |
-
causal=False,
|
284 |
-
softmax_scale=softmax_scale,
|
285 |
-
)
|
286 |
-
output = pad_input(attn_output_unpad, indices_q, bsz, seqlen)
|
287 |
-
# end var_len_flash_attn
|
288 |
-
|
289 |
-
else:
|
290 |
-
n_rep = self.n_local_heads // self.n_local_kv_heads
|
291 |
-
if n_rep >= 1:
|
292 |
-
xk = xk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
293 |
-
xv = xv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
294 |
-
output = (
|
295 |
-
F.scaled_dot_product_attention(
|
296 |
-
xq.permute(0, 2, 1, 3),
|
297 |
-
xk.permute(0, 2, 1, 3),
|
298 |
-
xv.permute(0, 2, 1, 3),
|
299 |
-
attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_local_heads, seqlen, -1),
|
300 |
-
scale=softmax_scale,
|
301 |
-
)
|
302 |
-
.permute(0, 2, 1, 3)
|
303 |
-
.to(dtype)
|
304 |
-
)
|
305 |
-
|
306 |
-
output = output.flatten(-2)
|
307 |
-
|
308 |
-
return self.out(output)
|
309 |
-
|
310 |
-
|
311 |
-
class FeedForward(nn.Module):
|
312 |
-
def __init__(
|
313 |
-
self,
|
314 |
-
dim: int,
|
315 |
-
hidden_dim: int,
|
316 |
-
multiple_of: int,
|
317 |
-
ffn_dim_multiplier: Optional[float],
|
318 |
-
):
|
319 |
-
"""
|
320 |
-
Initialize the FeedForward module.
|
321 |
-
|
322 |
-
Args:
|
323 |
-
dim (int): Input dimension.
|
324 |
-
hidden_dim (int): Hidden dimension of the feedforward layer.
|
325 |
-
multiple_of (int): Value to ensure hidden dimension is a multiple
|
326 |
-
of this value.
|
327 |
-
ffn_dim_multiplier (float, optional): Custom multiplier for hidden
|
328 |
-
dimension. Defaults to None.
|
329 |
-
|
330 |
-
"""
|
331 |
-
super().__init__()
|
332 |
-
# custom dim factor multiplier
|
333 |
-
if ffn_dim_multiplier is not None:
|
334 |
-
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
335 |
-
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
336 |
-
|
337 |
-
self.w1 = nn.Linear(
|
338 |
-
dim,
|
339 |
-
hidden_dim,
|
340 |
-
bias=False,
|
341 |
-
)
|
342 |
-
nn.init.xavier_uniform_(self.w1.weight)
|
343 |
-
self.w2 = nn.Linear(
|
344 |
-
hidden_dim,
|
345 |
-
dim,
|
346 |
-
bias=False,
|
347 |
-
)
|
348 |
-
nn.init.xavier_uniform_(self.w2.weight)
|
349 |
-
self.w3 = nn.Linear(
|
350 |
-
dim,
|
351 |
-
hidden_dim,
|
352 |
-
bias=False,
|
353 |
-
)
|
354 |
-
nn.init.xavier_uniform_(self.w3.weight)
|
355 |
-
|
356 |
-
# @torch.compile
|
357 |
-
def _forward_silu_gating(self, x1, x3):
|
358 |
-
return F.silu(x1) * x3
|
359 |
-
|
360 |
-
def forward(self, x):
|
361 |
-
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
|
362 |
-
|
363 |
-
|
364 |
-
class JointTransformerBlock(nn.Module):
|
365 |
-
def __init__(
|
366 |
-
self,
|
367 |
-
layer_id: int,
|
368 |
-
dim: int,
|
369 |
-
n_heads: int,
|
370 |
-
n_kv_heads: int,
|
371 |
-
multiple_of: int,
|
372 |
-
ffn_dim_multiplier: float,
|
373 |
-
norm_eps: float,
|
374 |
-
qk_norm: bool,
|
375 |
-
modulation=True
|
376 |
-
) -> None:
|
377 |
-
"""
|
378 |
-
Initialize a TransformerBlock.
|
379 |
-
|
380 |
-
Args:
|
381 |
-
layer_id (int): Identifier for the layer.
|
382 |
-
dim (int): Embedding dimension of the input features.
|
383 |
-
n_heads (int): Number of attention heads.
|
384 |
-
n_kv_heads (Optional[int]): Number of attention heads in key and
|
385 |
-
value features (if using GQA), or set to None for the same as
|
386 |
-
query.
|
387 |
-
multiple_of (int):
|
388 |
-
ffn_dim_multiplier (float):
|
389 |
-
norm_eps (float):
|
390 |
-
|
391 |
-
"""
|
392 |
-
super().__init__()
|
393 |
-
self.dim = dim
|
394 |
-
self.head_dim = dim // n_heads
|
395 |
-
self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm)
|
396 |
-
self.feed_forward = FeedForward(
|
397 |
-
dim=dim,
|
398 |
-
hidden_dim=4 * dim,
|
399 |
-
multiple_of=multiple_of,
|
400 |
-
ffn_dim_multiplier=ffn_dim_multiplier,
|
401 |
-
)
|
402 |
-
self.layer_id = layer_id
|
403 |
-
self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
|
404 |
-
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
|
405 |
-
|
406 |
-
self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
|
407 |
-
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
|
408 |
-
|
409 |
-
self.modulation = modulation
|
410 |
-
if modulation:
|
411 |
-
self.adaLN_modulation = nn.Sequential(
|
412 |
-
nn.SiLU(),
|
413 |
-
nn.Linear(
|
414 |
-
min(dim, 1024),
|
415 |
-
4 * dim,
|
416 |
-
bias=True,
|
417 |
-
),
|
418 |
-
)
|
419 |
-
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
420 |
-
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
421 |
-
|
422 |
-
def forward(
|
423 |
-
self,
|
424 |
-
x: torch.Tensor,
|
425 |
-
x_mask: torch.Tensor,
|
426 |
-
freqs_cis: torch.Tensor,
|
427 |
-
adaln_input: Optional[torch.Tensor]=None,
|
428 |
-
):
|
429 |
-
"""
|
430 |
-
Perform a forward pass through the TransformerBlock.
|
431 |
-
|
432 |
-
Args:
|
433 |
-
x (torch.Tensor): Input tensor.
|
434 |
-
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
|
435 |
-
|
436 |
-
Returns:
|
437 |
-
torch.Tensor: Output tensor after applying attention and
|
438 |
-
feedforward layers.
|
439 |
-
|
440 |
-
"""
|
441 |
-
if self.modulation:
|
442 |
-
assert adaln_input is not None
|
443 |
-
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1)
|
444 |
-
|
445 |
-
x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2(
|
446 |
-
self.attention(
|
447 |
-
modulate(self.attention_norm1(x), scale_msa),
|
448 |
-
x_mask,
|
449 |
-
freqs_cis,
|
450 |
-
)
|
451 |
-
)
|
452 |
-
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
|
453 |
-
self.feed_forward(
|
454 |
-
modulate(self.ffn_norm1(x), scale_mlp),
|
455 |
-
)
|
456 |
-
)
|
457 |
-
else:
|
458 |
-
assert adaln_input is None
|
459 |
-
x = x + self.attention_norm2(
|
460 |
-
self.attention(
|
461 |
-
self.attention_norm1(x),
|
462 |
-
x_mask,
|
463 |
-
freqs_cis,
|
464 |
-
)
|
465 |
-
)
|
466 |
-
x = x + self.ffn_norm2(
|
467 |
-
self.feed_forward(
|
468 |
-
self.ffn_norm1(x),
|
469 |
-
)
|
470 |
-
)
|
471 |
-
return x
|
472 |
-
|
473 |
-
|
474 |
-
class FinalLayer(nn.Module):
|
475 |
-
"""
|
476 |
-
The final layer of NextDiT.
|
477 |
-
"""
|
478 |
-
|
479 |
-
def __init__(self, hidden_size, patch_size, out_channels):
|
480 |
-
super().__init__()
|
481 |
-
self.norm_final = nn.LayerNorm(
|
482 |
-
hidden_size,
|
483 |
-
elementwise_affine=False,
|
484 |
-
eps=1e-6,
|
485 |
-
)
|
486 |
-
self.linear = nn.Linear(
|
487 |
-
hidden_size,
|
488 |
-
patch_size * patch_size * out_channels,
|
489 |
-
bias=True,
|
490 |
-
)
|
491 |
-
nn.init.zeros_(self.linear.weight)
|
492 |
-
nn.init.zeros_(self.linear.bias)
|
493 |
-
|
494 |
-
self.adaLN_modulation = nn.Sequential(
|
495 |
-
nn.SiLU(),
|
496 |
-
nn.Linear(
|
497 |
-
min(hidden_size, 1024),
|
498 |
-
hidden_size,
|
499 |
-
bias=True,
|
500 |
-
),
|
501 |
-
)
|
502 |
-
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
503 |
-
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
504 |
-
|
505 |
-
def forward(self, x, c):
|
506 |
-
scale = self.adaLN_modulation(c)
|
507 |
-
x = modulate(self.norm_final(x), scale)
|
508 |
-
x = self.linear(x)
|
509 |
-
return x
|
510 |
-
|
511 |
-
|
512 |
-
class RopeEmbedder:
|
513 |
-
def __init__(
|
514 |
-
self, theta: float = 10000.0, axes_dims: List[int] = (16, 56, 56), axes_lens: List[int] = (1, 512, 512)
|
515 |
-
):
|
516 |
-
super().__init__()
|
517 |
-
self.theta = theta
|
518 |
-
self.axes_dims = axes_dims
|
519 |
-
self.axes_lens = axes_lens
|
520 |
-
self.freqs_cis = NextDiT.precompute_freqs_cis(self.axes_dims, self.axes_lens, theta=self.theta)
|
521 |
-
|
522 |
-
def __call__(self, ids: torch.Tensor):
|
523 |
-
self.freqs_cis = [freqs_cis.to(ids.device) for freqs_cis in self.freqs_cis]
|
524 |
-
result = []
|
525 |
-
for i in range(len(self.axes_dims)):
|
526 |
-
# import torch.distributed as dist
|
527 |
-
# if not dist.is_initialized() or dist.get_rank() == 0:
|
528 |
-
# import pdb
|
529 |
-
# pdb.set_trace()
|
530 |
-
index = ids[:, :, i:i+1].repeat(1, 1, self.freqs_cis[i].shape[-1]).to(torch.int64)
|
531 |
-
result.append(torch.gather(self.freqs_cis[i].unsqueeze(0).repeat(index.shape[0], 1, 1), dim=1, index=index))
|
532 |
-
return torch.cat(result, dim=-1)
|
533 |
-
|
534 |
-
|
535 |
-
class NextDiT(nn.Module):
|
536 |
-
"""
|
537 |
-
Diffusion model with a Transformer backbone.
|
538 |
-
"""
|
539 |
-
|
540 |
-
def __init__(
|
541 |
-
self,
|
542 |
-
patch_size: int = 2,
|
543 |
-
in_channels: int = 4,
|
544 |
-
dim: int = 4096,
|
545 |
-
n_layers: int = 32,
|
546 |
-
n_refiner_layers: int = 2,
|
547 |
-
n_heads: int = 32,
|
548 |
-
n_kv_heads: Optional[int] = None,
|
549 |
-
multiple_of: int = 256,
|
550 |
-
ffn_dim_multiplier: Optional[float] = None,
|
551 |
-
norm_eps: float = 1e-5,
|
552 |
-
qk_norm: bool = False,
|
553 |
-
cap_feat_dim: int = 5120,
|
554 |
-
axes_dims: List[int] = (16, 56, 56),
|
555 |
-
axes_lens: List[int] = (1, 512, 512),
|
556 |
-
) -> None:
|
557 |
-
super().__init__()
|
558 |
-
self.in_channels = in_channels
|
559 |
-
self.out_channels = in_channels
|
560 |
-
self.patch_size = patch_size
|
561 |
-
|
562 |
-
self.x_embedder = nn.Linear(
|
563 |
-
in_features=patch_size * patch_size * in_channels,
|
564 |
-
out_features=dim,
|
565 |
-
bias=True,
|
566 |
-
)
|
567 |
-
nn.init.xavier_uniform_(self.x_embedder.weight)
|
568 |
-
nn.init.constant_(self.x_embedder.bias, 0.0)
|
569 |
-
|
570 |
-
self.noise_refiner = nn.ModuleList(
|
571 |
-
[
|
572 |
-
JointTransformerBlock(
|
573 |
-
layer_id,
|
574 |
-
dim,
|
575 |
-
n_heads,
|
576 |
-
n_kv_heads,
|
577 |
-
multiple_of,
|
578 |
-
ffn_dim_multiplier,
|
579 |
-
norm_eps,
|
580 |
-
qk_norm,
|
581 |
-
modulation=True,
|
582 |
-
)
|
583 |
-
for layer_id in range(n_refiner_layers)
|
584 |
-
]
|
585 |
-
)
|
586 |
-
self.context_refiner = nn.ModuleList(
|
587 |
-
[
|
588 |
-
JointTransformerBlock(
|
589 |
-
layer_id,
|
590 |
-
dim,
|
591 |
-
n_heads,
|
592 |
-
n_kv_heads,
|
593 |
-
multiple_of,
|
594 |
-
ffn_dim_multiplier,
|
595 |
-
norm_eps,
|
596 |
-
qk_norm,
|
597 |
-
modulation=False,
|
598 |
-
)
|
599 |
-
for layer_id in range(n_refiner_layers)
|
600 |
-
]
|
601 |
-
)
|
602 |
-
|
603 |
-
self.t_embedder = TimestepEmbedder(min(dim, 1024))
|
604 |
-
self.cap_embedder = nn.Sequential(
|
605 |
-
RMSNorm(cap_feat_dim, eps=norm_eps),
|
606 |
-
nn.Linear(
|
607 |
-
cap_feat_dim,
|
608 |
-
dim,
|
609 |
-
bias=True,
|
610 |
-
),
|
611 |
-
)
|
612 |
-
nn.init.trunc_normal_(self.cap_embedder[1].weight, std=0.02)
|
613 |
-
# nn.init.zeros_(self.cap_embedder[1].weight)
|
614 |
-
nn.init.zeros_(self.cap_embedder[1].bias)
|
615 |
-
|
616 |
-
self.layers = nn.ModuleList(
|
617 |
-
[
|
618 |
-
JointTransformerBlock(
|
619 |
-
layer_id,
|
620 |
-
dim,
|
621 |
-
n_heads,
|
622 |
-
n_kv_heads,
|
623 |
-
multiple_of,
|
624 |
-
ffn_dim_multiplier,
|
625 |
-
norm_eps,
|
626 |
-
qk_norm,
|
627 |
-
)
|
628 |
-
for layer_id in range(n_layers)
|
629 |
-
]
|
630 |
-
)
|
631 |
-
self.norm_final = RMSNorm(dim, eps=norm_eps)
|
632 |
-
self.final_layer = FinalLayer(dim, patch_size, self.out_channels)
|
633 |
-
|
634 |
-
assert (dim // n_heads) == sum(axes_dims)
|
635 |
-
self.axes_dims = axes_dims
|
636 |
-
self.axes_lens = axes_lens
|
637 |
-
self.rope_embedder = RopeEmbedder(axes_dims=axes_dims, axes_lens=axes_lens)
|
638 |
-
self.dim = dim
|
639 |
-
self.n_heads = n_heads
|
640 |
-
|
641 |
-
def unpatchify(
|
642 |
-
self, x: torch.Tensor, img_size: List[Tuple[int, int]], cap_size: List[int], return_tensor=False
|
643 |
-
) -> List[torch.Tensor]:
|
644 |
-
"""
|
645 |
-
x: (N, T, patch_size**2 * C)
|
646 |
-
imgs: (N, H, W, C)
|
647 |
-
"""
|
648 |
-
pH = pW = self.patch_size
|
649 |
-
imgs = []
|
650 |
-
for i in range(x.size(0)):
|
651 |
-
H, W = img_size[i]
|
652 |
-
begin = cap_size[i]
|
653 |
-
end = begin + (H // pH) * (W // pW)
|
654 |
-
imgs.append(
|
655 |
-
x[i][begin:end]
|
656 |
-
.view(H // pH, W // pW, pH, pW, self.out_channels)
|
657 |
-
.permute(4, 0, 2, 1, 3)
|
658 |
-
.flatten(3, 4)
|
659 |
-
.flatten(1, 2)
|
660 |
-
)
|
661 |
-
|
662 |
-
if return_tensor:
|
663 |
-
imgs = torch.stack(imgs, dim=0)
|
664 |
-
return imgs
|
665 |
-
|
666 |
-
def patchify_and_embed(
|
667 |
-
self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor
|
668 |
-
) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], List[int], torch.Tensor]:
|
669 |
-
bsz = len(x)
|
670 |
-
pH = pW = self.patch_size
|
671 |
-
device = x[0].device
|
672 |
-
|
673 |
-
l_effective_cap_len = cap_mask.sum(dim=1).tolist()
|
674 |
-
img_sizes = [(img.size(1), img.size(2)) for img in x]
|
675 |
-
l_effective_img_len = [(H // pH) * (W // pW) for (H, W) in img_sizes]
|
676 |
-
|
677 |
-
max_seq_len = max(
|
678 |
-
(cap_len+img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len))
|
679 |
-
)
|
680 |
-
max_cap_len = max(l_effective_cap_len)
|
681 |
-
max_img_len = max(l_effective_img_len)
|
682 |
-
|
683 |
-
position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.int32, device=device)
|
684 |
-
|
685 |
-
for i in range(bsz):
|
686 |
-
cap_len = l_effective_cap_len[i]
|
687 |
-
img_len = l_effective_img_len[i]
|
688 |
-
H, W = img_sizes[i]
|
689 |
-
H_tokens, W_tokens = H // pH, W // pW
|
690 |
-
assert H_tokens * W_tokens == img_len
|
691 |
-
|
692 |
-
position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.int32, device=device)
|
693 |
-
position_ids[i, cap_len:cap_len+img_len, 0] = cap_len
|
694 |
-
row_ids = torch.arange(H_tokens, dtype=torch.int32, device=device).view(-1, 1).repeat(1, W_tokens).flatten()
|
695 |
-
col_ids = torch.arange(W_tokens, dtype=torch.int32, device=device).view(1, -1).repeat(H_tokens, 1).flatten()
|
696 |
-
position_ids[i, cap_len:cap_len+img_len, 1] = row_ids
|
697 |
-
position_ids[i, cap_len:cap_len+img_len, 2] = col_ids
|
698 |
-
|
699 |
-
freqs_cis = self.rope_embedder(position_ids)
|
700 |
-
|
701 |
-
# build freqs_cis for cap and image individually
|
702 |
-
cap_freqs_cis_shape = list(freqs_cis.shape)
|
703 |
-
# cap_freqs_cis_shape[1] = max_cap_len
|
704 |
-
cap_freqs_cis_shape[1] = cap_feats.shape[1]
|
705 |
-
cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
|
706 |
-
|
707 |
-
img_freqs_cis_shape = list(freqs_cis.shape)
|
708 |
-
img_freqs_cis_shape[1] = max_img_len
|
709 |
-
img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
|
710 |
-
|
711 |
-
for i in range(bsz):
|
712 |
-
cap_len = l_effective_cap_len[i]
|
713 |
-
img_len = l_effective_img_len[i]
|
714 |
-
cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len]
|
715 |
-
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len:cap_len+img_len]
|
716 |
-
|
717 |
-
# refine context
|
718 |
-
for layer in self.context_refiner:
|
719 |
-
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis)
|
720 |
-
|
721 |
-
# refine image
|
722 |
-
flat_x = []
|
723 |
-
for i in range(bsz):
|
724 |
-
img = x[i]
|
725 |
-
C, H, W = img.size()
|
726 |
-
img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 2, 4, 0).flatten(2).flatten(0, 1)
|
727 |
-
flat_x.append(img)
|
728 |
-
x = flat_x
|
729 |
-
padded_img_embed = torch.zeros(bsz, max_img_len, x[0].shape[-1], device=device, dtype=x[0].dtype)
|
730 |
-
padded_img_mask = torch.zeros(bsz, max_img_len, dtype=torch.bool, device=device)
|
731 |
-
for i in range(bsz):
|
732 |
-
padded_img_embed[i, :l_effective_img_len[i]] = x[i]
|
733 |
-
padded_img_mask[i, :l_effective_img_len[i]] = True
|
734 |
-
|
735 |
-
padded_img_embed = self.x_embedder(padded_img_embed)
|
736 |
-
for layer in self.noise_refiner:
|
737 |
-
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t)
|
738 |
-
|
739 |
-
mask = torch.zeros(bsz, max_seq_len, dtype=torch.bool, device=device)
|
740 |
-
padded_full_embed = torch.zeros(bsz, max_seq_len, self.dim, device=device, dtype=x[0].dtype)
|
741 |
-
for i in range(bsz):
|
742 |
-
cap_len = l_effective_cap_len[i]
|
743 |
-
img_len = l_effective_img_len[i]
|
744 |
-
|
745 |
-
mask[i, :cap_len+img_len] = True
|
746 |
-
padded_full_embed[i, :cap_len] = cap_feats[i, :cap_len]
|
747 |
-
padded_full_embed[i, cap_len:cap_len+img_len] = padded_img_embed[i, :img_len]
|
748 |
-
|
749 |
-
return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis
|
750 |
-
|
751 |
-
|
752 |
-
def forward(self, x, t, cap_feats, cap_mask):
|
753 |
-
"""
|
754 |
-
Forward pass of NextDiT.
|
755 |
-
t: (N,) tensor of diffusion timesteps
|
756 |
-
y: (N,) tensor of text tokens/features
|
757 |
-
"""
|
758 |
-
|
759 |
-
# import torch.distributed as dist
|
760 |
-
# if not dist.is_initialized() or dist.get_rank() == 0:
|
761 |
-
# import pdb
|
762 |
-
# pdb.set_trace()
|
763 |
-
# torch.save([x, t, cap_feats, cap_mask], "./fake_input.pt")
|
764 |
-
t = self.t_embedder(t) # (N, D)
|
765 |
-
adaln_input = t
|
766 |
-
|
767 |
-
cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute
|
768 |
-
|
769 |
-
x_is_tensor = isinstance(x, torch.Tensor)
|
770 |
-
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t)
|
771 |
-
freqs_cis = freqs_cis.to(x.device)
|
772 |
-
|
773 |
-
for layer in self.layers:
|
774 |
-
x = layer(x, mask, freqs_cis, adaln_input)
|
775 |
-
|
776 |
-
x = self.final_layer(x, adaln_input)
|
777 |
-
x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)
|
778 |
-
|
779 |
-
return x
|
780 |
-
|
781 |
-
def forward_with_cfg(
|
782 |
-
self,
|
783 |
-
x,
|
784 |
-
t,
|
785 |
-
cap_feats,
|
786 |
-
cap_mask,
|
787 |
-
cfg_scale,
|
788 |
-
cfg_trunc=1,
|
789 |
-
renorm_cfg=1
|
790 |
-
):
|
791 |
-
"""
|
792 |
-
Forward pass of NextDiT, but also batches the unconditional forward pass
|
793 |
-
for classifier-free guidance.
|
794 |
-
"""
|
795 |
-
# # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
|
796 |
-
half = x[: len(x) // 2]
|
797 |
-
if t[0] < cfg_trunc:
|
798 |
-
combined = torch.cat([half, half], dim=0) # [2, 16, 128, 128]
|
799 |
-
model_out = self.forward(combined, t, cap_feats, cap_mask) # [2, 16, 128, 128]
|
800 |
-
# For exact reproducibility reasons, we apply classifier-free guidance on only
|
801 |
-
# three channels by default. The standard approach to cfg applies it to all channels.
|
802 |
-
# This can be done by uncommenting the following line and commenting-out the line following that.
|
803 |
-
eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :]
|
804 |
-
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
|
805 |
-
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
|
806 |
-
if float(renorm_cfg) > 0.0:
|
807 |
-
ori_pos_norm = torch.linalg.vector_norm(cond_eps
|
808 |
-
, dim=tuple(range(1, len(cond_eps.shape))), keepdim=True
|
809 |
-
)
|
810 |
-
max_new_norm = ori_pos_norm * float(renorm_cfg)
|
811 |
-
new_pos_norm = torch.linalg.vector_norm(
|
812 |
-
half_eps, dim=tuple(range(1, len(half_eps.shape))), keepdim=True
|
813 |
-
)
|
814 |
-
if new_pos_norm >= max_new_norm:
|
815 |
-
half_eps = half_eps * (max_new_norm / new_pos_norm)
|
816 |
-
else:
|
817 |
-
combined = half
|
818 |
-
model_out = self.forward(combined, t[:len(x) // 2], cap_feats[:len(x) // 2], cap_mask[:len(x) // 2])
|
819 |
-
eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :]
|
820 |
-
half_eps = eps
|
821 |
-
|
822 |
-
output = torch.cat([half_eps, half_eps], dim=0)
|
823 |
-
return output
|
824 |
-
|
825 |
-
@staticmethod
|
826 |
-
def precompute_freqs_cis(
|
827 |
-
dim: List[int],
|
828 |
-
end: List[int],
|
829 |
-
theta: float = 10000.0,
|
830 |
-
):
|
831 |
-
"""
|
832 |
-
Precompute the frequency tensor for complex exponentials (cis) with
|
833 |
-
given dimensions.
|
834 |
-
|
835 |
-
This function calculates a frequency tensor with complex exponentials
|
836 |
-
using the given dimension 'dim' and the end index 'end'. The 'theta'
|
837 |
-
parameter scales the frequencies. The returned tensor contains complex
|
838 |
-
values in complex64 data type.
|
839 |
-
|
840 |
-
Args:
|
841 |
-
dim (list): Dimension of the frequency tensor.
|
842 |
-
end (list): End index for precomputing frequencies.
|
843 |
-
theta (float, optional): Scaling factor for frequency computation.
|
844 |
-
Defaults to 10000.0.
|
845 |
-
|
846 |
-
Returns:
|
847 |
-
torch.Tensor: Precomputed frequency tensor with complex
|
848 |
-
exponentials.
|
849 |
-
"""
|
850 |
-
freqs_cis = []
|
851 |
-
for i, (d, e) in enumerate(zip(dim, end)):
|
852 |
-
freqs = 1.0 / (theta ** (torch.arange(0, d, 2, dtype=torch.float64, device="cpu") / d))
|
853 |
-
timestep = torch.arange(e, device=freqs.device, dtype=torch.float64)
|
854 |
-
freqs = torch.outer(timestep, freqs).float()
|
855 |
-
freqs_cis_i = torch.polar(torch.ones_like(freqs), freqs).to(torch.complex64) # complex64
|
856 |
-
freqs_cis.append(freqs_cis_i)
|
857 |
-
|
858 |
-
return freqs_cis
|
859 |
-
|
860 |
-
def parameter_count(self) -> int:
|
861 |
-
total_params = 0
|
862 |
-
|
863 |
-
def _recursive_count_params(module):
|
864 |
-
nonlocal total_params
|
865 |
-
for param in module.parameters(recurse=False):
|
866 |
-
total_params += param.numel()
|
867 |
-
for submodule in module.children():
|
868 |
-
_recursive_count_params(submodule)
|
869 |
-
|
870 |
-
_recursive_count_params(self)
|
871 |
-
return total_params
|
872 |
-
|
873 |
-
def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
|
874 |
-
return list(self.layers)
|
875 |
-
|
876 |
-
def get_checkpointing_wrap_module_list(self) -> List[nn.Module]:
|
877 |
-
return list(self.layers)
|
878 |
-
|
879 |
-
|
880 |
-
#############################################################################
|
881 |
-
# NextDiT Configs #
|
882 |
-
#############################################################################
|
883 |
-
|
884 |
-
def NextDiT_2B_GQA_patch2_Adaln_Refiner(**kwargs):
|
885 |
-
return NextDiT(
|
886 |
-
patch_size=2,
|
887 |
-
dim=2304,
|
888 |
-
n_layers=26,
|
889 |
-
n_heads=24,
|
890 |
-
n_kv_heads=8,
|
891 |
-
axes_dims=[32, 32, 32],
|
892 |
-
axes_lens=[300, 512, 512],
|
893 |
-
**kwargs
|
894 |
-
)
|
895 |
-
|
896 |
-
def NextDiT_3B_GQA_patch2_Adaln_Refiner(**kwargs):
|
897 |
-
return NextDiT(
|
898 |
-
patch_size=2,
|
899 |
-
dim=2592,
|
900 |
-
n_layers=30,
|
901 |
-
n_heads=24,
|
902 |
-
n_kv_heads=8,
|
903 |
-
axes_dims=[36, 36, 36],
|
904 |
-
axes_lens=[300, 512, 512],
|
905 |
-
**kwargs,
|
906 |
-
)
|
907 |
-
|
908 |
-
def NextDiT_4B_GQA_patch2_Adaln_Refiner(**kwargs):
|
909 |
-
return NextDiT(
|
910 |
-
patch_size=2,
|
911 |
-
dim=2880,
|
912 |
-
n_layers=32,
|
913 |
-
n_heads=24,
|
914 |
-
n_kv_heads=8,
|
915 |
-
axes_dims=[40, 40, 40],
|
916 |
-
axes_lens=[300, 512, 512],
|
917 |
-
**kwargs,
|
918 |
-
)
|
919 |
-
|
920 |
-
def NextDiT_7B_GQA_patch2_Adaln_Refiner(**kwargs):
|
921 |
-
return NextDiT(
|
922 |
-
patch_size=2,
|
923 |
-
dim=3840,
|
924 |
-
n_layers=32,
|
925 |
-
n_heads=32,
|
926 |
-
n_kv_heads=8,
|
927 |
-
axes_dims=[40, 40, 40],
|
928 |
-
axes_lens=[300, 512, 512],
|
929 |
-
**kwargs,
|
930 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|