Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,12 @@ subprocess.run(
|
|
17 |
shell=True,
|
18 |
)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
os.makedirs("/home/user/app/checkpoints", exist_ok=True)
|
21 |
from huggingface_hub import snapshot_download
|
22 |
snapshot_download(
|
@@ -26,30 +32,31 @@ snapshot_download(
|
|
26 |
hf_token = os.environ["HF_TOKEN"]
|
27 |
|
28 |
import argparse
|
29 |
-
import os
|
30 |
import builtins
|
31 |
import json
|
32 |
import math
|
33 |
import multiprocessing as mp
|
34 |
-
import os
|
35 |
import random
|
36 |
import socket
|
37 |
import traceback
|
38 |
|
39 |
-
#import fairscale.nn.model_parallel.initialize as fs_init
|
40 |
import gradio as gr
|
41 |
import numpy as np
|
42 |
from safetensors.torch import load_file
|
43 |
import torch
|
44 |
-
#i#mport torch.distributed as dist
|
45 |
from torchvision.transforms.functional import to_pil_image
|
|
|
|
|
|
|
|
|
|
|
46 |
import spaces
|
47 |
|
48 |
from imgproc import generate_crop_size_list
|
49 |
import models
|
50 |
from transport import Sampler, create_transport
|
51 |
|
52 |
-
from multiprocessing import Process,Queue,set_start_method,get_context
|
53 |
|
54 |
class ModelFailure:
|
55 |
pass
|
@@ -93,22 +100,19 @@ def encode_prompt(prompt_batch, text_encoder, tokenizer, proportion_empty_prompt
|
|
93 |
|
94 |
@torch.no_grad()
|
95 |
def model_main(args, master_port, rank):
|
96 |
-
#
|
97 |
from diffusers.models import AutoencoderKL
|
98 |
from transformers import AutoModel, AutoTokenizer
|
99 |
|
100 |
-
#
|
101 |
original_print = builtins.print
|
102 |
|
103 |
-
# Redefine the print function with flush=True by default
|
104 |
def print(*args, **kwargs):
|
105 |
kwargs.setdefault("flush", True)
|
106 |
original_print(*args, **kwargs)
|
107 |
|
108 |
-
# Override the built-in print with the new version
|
109 |
builtins.print = print
|
110 |
|
111 |
-
|
112 |
train_args = torch.load(os.path.join(args.ckpt, "model_args.pth"))
|
113 |
print("Loaded model arguments:", json.dumps(train_args.__dict__, indent=2))
|
114 |
|
@@ -139,8 +143,8 @@ def model_main(args, master_port, rank):
|
|
139 |
|
140 |
assert train_args.model_parallel_size == args.num_gpus
|
141 |
if args.ema:
|
142 |
-
print("Loading
|
143 |
-
print('
|
144 |
ckpt_path = os.path.join(
|
145 |
args.ckpt,
|
146 |
f"consolidated{'_ema' if args.ema else ''}.{rank:02d}-of-{args.num_gpus:02d}.safetensors",
|
@@ -155,158 +159,150 @@ def model_main(args, master_port, rank):
|
|
155 |
assert os.path.exists(ckpt_path)
|
156 |
ckpt = torch.load(ckpt_path, map_location="cuda")
|
157 |
model.load_state_dict(ckpt, strict=True)
|
158 |
-
print('
|
159 |
|
160 |
return text_encoder, tokenizer, vae, model
|
161 |
|
162 |
|
163 |
@torch.no_grad()
|
164 |
def inference(args, infer_args, text_encoder, tokenizer, vae, model):
|
165 |
-
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[
|
166 |
-
args.precision
|
167 |
-
]
|
168 |
train_args = torch.load(os.path.join(args.ckpt, "model_args.pth"))
|
169 |
torch.cuda.set_device(0)
|
170 |
with torch.autocast("cuda", dtype):
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
"Linear",
|
218 |
-
"velocity",
|
219 |
-
)
|
220 |
-
sampler = Sampler(transport)
|
221 |
-
sample_fn = sampler.sample_dpm(
|
222 |
model.forward_with_cfg,
|
223 |
model_kwargs=model_kwargs,
|
224 |
-
)
|
225 |
-
else:
|
226 |
-
transport = create_transport(
|
227 |
-
args.path_type,
|
228 |
-
args.prediction,
|
229 |
-
args.loss_weight,
|
230 |
-
args.train_eps,
|
231 |
-
args.sample_eps,
|
232 |
-
)
|
233 |
-
sampler = Sampler(transport)
|
234 |
-
sample_fn = sampler.sample_ode(
|
235 |
-
sampling_method=solver,
|
236 |
-
num_steps=num_sampling_steps,
|
237 |
-
atol=args.atol,
|
238 |
-
rtol=args.rtol,
|
239 |
-
reverse=args.reverse,
|
240 |
-
time_shifting_factor=t_shift,
|
241 |
-
)
|
242 |
-
# end sampler
|
243 |
-
|
244 |
-
resolution = resolution.split(" ")[-1]
|
245 |
-
w, h = resolution.split("x")
|
246 |
-
w, h = int(w), int(h)
|
247 |
-
latent_w, latent_h = w // 8, h // 8
|
248 |
-
if int(seed) != 0:
|
249 |
-
torch.random.manual_seed(int(seed))
|
250 |
-
z = torch.randn([1, 16, latent_h, latent_w], device="cuda").to(dtype)
|
251 |
-
z = z.repeat(2, 1, 1, 1)
|
252 |
-
|
253 |
-
with torch.no_grad():
|
254 |
-
if neg_cap != "":
|
255 |
-
cap_feats, cap_mask = encode_prompt([cap] + [neg_cap], text_encoder, tokenizer, 0.0)
|
256 |
-
else:
|
257 |
-
cap_feats, cap_mask = encode_prompt([cap] + [""], text_encoder, tokenizer, 0.0)
|
258 |
-
|
259 |
-
cap_mask = cap_mask.to(cap_feats.device)
|
260 |
-
|
261 |
-
model_kwargs = dict(
|
262 |
-
cap_feats=cap_feats,
|
263 |
-
cap_mask=cap_mask,
|
264 |
-
cfg_scale=cfg_scale,
|
265 |
-
cfg_trunc=1 - cfg_trunc,
|
266 |
-
renorm_cfg=renorm_cfg,
|
267 |
)
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
else:
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
|
312 |
def none_or_str(value):
|
@@ -322,24 +318,24 @@ def parse_transport_args(parser):
|
|
322 |
type=str,
|
323 |
default="Linear",
|
324 |
choices=["Linear", "GVP", "VP"],
|
325 |
-
help="
|
326 |
)
|
327 |
group.add_argument(
|
328 |
"--prediction",
|
329 |
type=str,
|
330 |
default="velocity",
|
331 |
choices=["velocity", "score", "noise"],
|
332 |
-
help="
|
333 |
)
|
334 |
group.add_argument(
|
335 |
"--loss-weight",
|
336 |
type=none_or_str,
|
337 |
default=None,
|
338 |
choices=[None, "velocity", "likelihood"],
|
339 |
-
help="
|
340 |
)
|
341 |
-
group.add_argument("--sample-eps", type=float, help="
|
342 |
-
group.add_argument("--train-eps", type=float, help="
|
343 |
|
344 |
|
345 |
def parse_ode_args(parser):
|
@@ -356,11 +352,11 @@ def parse_ode_args(parser):
|
|
356 |
default=1e-3,
|
357 |
help="Relative tolerance for the ODE solver.",
|
358 |
)
|
359 |
-
group.add_argument("--reverse", action="store_true", help="
|
360 |
group.add_argument(
|
361 |
"--likelihood",
|
362 |
action="store_true",
|
363 |
-
help="Enable calculation
|
364 |
)
|
365 |
|
366 |
|
@@ -372,14 +368,26 @@ def find_free_port() -> int:
|
|
372 |
return port
|
373 |
|
374 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
def main():
|
376 |
parser = argparse.ArgumentParser()
|
377 |
|
378 |
parser.add_argument("--num_gpus", type=int, default=1)
|
379 |
-
parser.add_argument("--ckpt", type=str,default='/home/user/app/checkpoints', required=False)
|
380 |
parser.add_argument("--ema", action="store_true")
|
381 |
parser.add_argument("--precision", default="bf16", choices=["bf16", "fp32"])
|
382 |
-
parser.add_argument("--hf_token", type=str, default=None, help="
|
383 |
parser.add_argument("--res", type=int, default=1024, choices=[256, 512, 1024])
|
384 |
parser.add_argument("--port", type=int, default=12123)
|
385 |
|
@@ -397,9 +405,30 @@ def main():
|
|
397 |
|
398 |
description = "Lumina-Image 2.0 ([Github](https://github.com/Alpha-VLLM/Lumina-Image-2.0/tree/main))"
|
399 |
|
400 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
with gr.Row():
|
402 |
-
gr.Markdown(description)
|
403 |
with gr.Row():
|
404 |
with gr.Column():
|
405 |
cap = gr.Textbox(
|
@@ -416,21 +445,20 @@ def main():
|
|
416 |
value="",
|
417 |
placeholder="Enter a negative caption.",
|
418 |
)
|
419 |
-
default_value = "You are an assistant designed to generate
|
420 |
system_type = gr.Dropdown(
|
421 |
value=default_value,
|
422 |
choices=[
|
423 |
-
|
424 |
"You are an assistant designed to generate superior images with the superior degree of image-text alignment based on textual prompts or user prompts.",
|
425 |
"",
|
426 |
-
|
427 |
label="System Type",
|
428 |
)
|
429 |
|
430 |
with gr.Row():
|
431 |
res_choices = [f"{w}x{h}" for w, h in generate_crop_size_list((args.res // 64) ** 2, 64)]
|
432 |
-
default_value = "1024x1024"
|
433 |
-
|
434 |
resolution = gr.Dropdown(
|
435 |
value=default_value, choices=res_choices, label="Resolution"
|
436 |
)
|
@@ -441,7 +469,7 @@ def main():
|
|
441 |
value=40,
|
442 |
step=1,
|
443 |
interactive=True,
|
444 |
-
label="Sampling
|
445 |
)
|
446 |
seed = gr.Slider(
|
447 |
minimum=0,
|
@@ -463,7 +491,7 @@ def main():
|
|
463 |
solver = gr.Dropdown(
|
464 |
value="euler",
|
465 |
choices=["euler", "midpoint", "rk4"],
|
466 |
-
label="
|
467 |
)
|
468 |
t_shift = gr.Slider(
|
469 |
minimum=1,
|
@@ -471,17 +499,17 @@ def main():
|
|
471 |
value=6,
|
472 |
step=1,
|
473 |
interactive=True,
|
474 |
-
label="Time
|
475 |
)
|
476 |
cfg_scale = gr.Slider(
|
477 |
minimum=1.0,
|
478 |
maximum=20.0,
|
479 |
value=4.0,
|
480 |
interactive=True,
|
481 |
-
label="CFG
|
482 |
)
|
483 |
with gr.Row():
|
484 |
-
|
485 |
value=True,
|
486 |
choices=[True, False, 2.0],
|
487 |
label="CFG Renorm",
|
@@ -491,51 +519,52 @@ def main():
|
|
491 |
scaling_method = gr.Dropdown(
|
492 |
value="Time-aware",
|
493 |
choices=["Time-aware", "None"],
|
494 |
-
label="RoPE
|
495 |
)
|
496 |
scaling_watershed = gr.Slider(
|
497 |
minimum=0.0,
|
498 |
maximum=1.0,
|
499 |
value=0.3,
|
500 |
interactive=True,
|
501 |
-
label="Linear/NTK
|
502 |
)
|
503 |
with gr.Row():
|
504 |
proportional_attn = gr.Checkbox(
|
505 |
value=True,
|
506 |
interactive=True,
|
507 |
-
label="Proportional
|
508 |
)
|
509 |
with gr.Row():
|
510 |
submit_btn = gr.Button("Submit", variant="primary")
|
511 |
with gr.Column():
|
512 |
output_img = gr.Image(
|
513 |
-
label="Generated
|
514 |
interactive=False,
|
515 |
)
|
516 |
with gr.Accordion(label="Generation Parameters", open=True):
|
517 |
-
gr_metadata = gr.JSON(label="
|
518 |
|
519 |
with gr.Row():
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
prompts = [[
|
527 |
-
gr.Examples(
|
528 |
-
prompts,
|
529 |
-
[cap],
|
530 |
-
label="Examples",
|
531 |
-
) # noqa
|
532 |
|
533 |
@spaces.GPU(duration=200)
|
534 |
-
def on_submit(
|
|
|
|
|
|
|
|
|
|
|
|
|
535 |
result = inference(args, infer_args, text_encoder, tokenizer, vae, model)
|
536 |
if isinstance(result, ModelFailure):
|
537 |
raise RuntimeError("Model failed to generate the image.")
|
538 |
-
|
539 |
return result
|
540 |
|
541 |
submit_btn.click(
|
|
|
17 |
shell=True,
|
18 |
)
|
19 |
|
20 |
+
# Additional dependencies for translation and UI improvements
|
21 |
+
subprocess.run(
|
22 |
+
"pip install transformers gradio safetensors torchvision diffusers",
|
23 |
+
shell=True,
|
24 |
+
)
|
25 |
+
|
26 |
os.makedirs("/home/user/app/checkpoints", exist_ok=True)
|
27 |
from huggingface_hub import snapshot_download
|
28 |
snapshot_download(
|
|
|
32 |
hf_token = os.environ["HF_TOKEN"]
|
33 |
|
34 |
import argparse
|
|
|
35 |
import builtins
|
36 |
import json
|
37 |
import math
|
38 |
import multiprocessing as mp
|
|
|
39 |
import random
|
40 |
import socket
|
41 |
import traceback
|
42 |
|
|
|
43 |
import gradio as gr
|
44 |
import numpy as np
|
45 |
from safetensors.torch import load_file
|
46 |
import torch
|
|
|
47 |
from torchvision.transforms.functional import to_pil_image
|
48 |
+
|
49 |
+
# Import translation pipeline from transformers
|
50 |
+
from transformers import pipeline
|
51 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
52 |
+
|
53 |
import spaces
|
54 |
|
55 |
from imgproc import generate_crop_size_list
|
56 |
import models
|
57 |
from transport import Sampler, create_transport
|
58 |
|
59 |
+
from multiprocessing import Process, Queue, set_start_method, get_context
|
60 |
|
61 |
class ModelFailure:
|
62 |
pass
|
|
|
100 |
|
101 |
@torch.no_grad()
|
102 |
def model_main(args, master_port, rank):
|
103 |
+
# Import here to avoid huggingface Tokenizer parallelism warnings
|
104 |
from diffusers.models import AutoencoderKL
|
105 |
from transformers import AutoModel, AutoTokenizer
|
106 |
|
107 |
+
# Override the default print function since the delay can be large for child processes
|
108 |
original_print = builtins.print
|
109 |
|
|
|
110 |
def print(*args, **kwargs):
|
111 |
kwargs.setdefault("flush", True)
|
112 |
original_print(*args, **kwargs)
|
113 |
|
|
|
114 |
builtins.print = print
|
115 |
|
|
|
116 |
train_args = torch.load(os.path.join(args.ckpt, "model_args.pth"))
|
117 |
print("Loaded model arguments:", json.dumps(train_args.__dict__, indent=2))
|
118 |
|
|
|
143 |
|
144 |
assert train_args.model_parallel_size == args.num_gpus
|
145 |
if args.ema:
|
146 |
+
print("Loading EMA model.")
|
147 |
+
print('Loading model weights...')
|
148 |
ckpt_path = os.path.join(
|
149 |
args.ckpt,
|
150 |
f"consolidated{'_ema' if args.ema else ''}.{rank:02d}-of-{args.num_gpus:02d}.safetensors",
|
|
|
159 |
assert os.path.exists(ckpt_path)
|
160 |
ckpt = torch.load(ckpt_path, map_location="cuda")
|
161 |
model.load_state_dict(ckpt, strict=True)
|
162 |
+
print('Model weights loaded.')
|
163 |
|
164 |
return text_encoder, tokenizer, vae, model
|
165 |
|
166 |
|
167 |
@torch.no_grad()
|
168 |
def inference(args, infer_args, text_encoder, tokenizer, vae, model):
|
169 |
+
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[args.precision]
|
|
|
|
|
170 |
train_args = torch.load(os.path.join(args.ckpt, "model_args.pth"))
|
171 |
torch.cuda.set_device(0)
|
172 |
with torch.autocast("cuda", dtype):
|
173 |
+
(
|
174 |
+
cap,
|
175 |
+
neg_cap,
|
176 |
+
system_type,
|
177 |
+
resolution,
|
178 |
+
num_sampling_steps,
|
179 |
+
cfg_scale,
|
180 |
+
cfg_trunc,
|
181 |
+
renorm_cfg,
|
182 |
+
solver,
|
183 |
+
t_shift,
|
184 |
+
seed,
|
185 |
+
scaling_method,
|
186 |
+
scaling_watershed,
|
187 |
+
proportional_attn,
|
188 |
+
) = infer_args
|
189 |
+
|
190 |
+
system_prompt = system_type
|
191 |
+
cap = system_prompt + cap
|
192 |
+
if neg_cap != "":
|
193 |
+
neg_cap = system_prompt + neg_cap
|
194 |
+
|
195 |
+
metadata = dict(
|
196 |
+
real_cap=cap,
|
197 |
+
real_neg_cap=neg_cap,
|
198 |
+
system_type=system_type,
|
199 |
+
resolution=resolution,
|
200 |
+
num_sampling_steps=num_sampling_steps,
|
201 |
+
cfg_scale=cfg_scale,
|
202 |
+
cfg_trunc=cfg_trunc,
|
203 |
+
renorm_cfg=renorm_cfg,
|
204 |
+
solver=solver,
|
205 |
+
t_shift=t_shift,
|
206 |
+
seed=seed,
|
207 |
+
scaling_method=scaling_method,
|
208 |
+
scaling_watershed=scaling_watershed,
|
209 |
+
proportional_attn=proportional_attn,
|
210 |
+
)
|
211 |
+
print("> Parameters:", json.dumps(metadata, indent=2))
|
212 |
+
|
213 |
+
try:
|
214 |
+
# Begin sampler
|
215 |
+
if solver == "dpm":
|
216 |
+
transport = create_transport("Linear", "velocity")
|
217 |
+
sampler = Sampler(transport)
|
218 |
+
sample_fn = sampler.sample_dpm(
|
|
|
|
|
|
|
|
|
|
|
219 |
model.forward_with_cfg,
|
220 |
model_kwargs=model_kwargs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
)
|
222 |
+
else:
|
223 |
+
transport = create_transport(
|
224 |
+
args.path_type,
|
225 |
+
args.prediction,
|
226 |
+
args.loss_weight,
|
227 |
+
args.train_eps,
|
228 |
+
args.sample_eps,
|
229 |
+
)
|
230 |
+
sampler = Sampler(transport)
|
231 |
+
sample_fn = sampler.sample_ode(
|
232 |
+
sampling_method=solver,
|
233 |
+
num_steps=num_sampling_steps,
|
234 |
+
atol=args.atol,
|
235 |
+
rtol=args.rtol,
|
236 |
+
reverse=args.reverse,
|
237 |
+
time_shifting_factor=t_shift,
|
238 |
+
)
|
239 |
+
# End sampler
|
240 |
+
|
241 |
+
resolution = resolution.split(" ")[-1]
|
242 |
+
w, h = resolution.split("x")
|
243 |
+
w, h = int(w), int(h)
|
244 |
+
latent_w, latent_h = w // 8, h // 8
|
245 |
+
if int(seed) != 0:
|
246 |
+
torch.random.manual_seed(int(seed))
|
247 |
+
z = torch.randn([1, 16, latent_h, latent_w], device="cuda").to(dtype)
|
248 |
+
z = z.repeat(2, 1, 1, 1)
|
249 |
+
|
250 |
+
with torch.no_grad():
|
251 |
+
if neg_cap != "":
|
252 |
+
cap_feats, cap_mask = encode_prompt([cap] + [neg_cap], text_encoder, tokenizer, 0.0)
|
253 |
else:
|
254 |
+
cap_feats, cap_mask = encode_prompt([cap] + [""], text_encoder, tokenizer, 0.0)
|
255 |
+
|
256 |
+
cap_mask = cap_mask.to(cap_feats.device)
|
257 |
+
|
258 |
+
model_kwargs = dict(
|
259 |
+
cap_feats=cap_feats,
|
260 |
+
cap_mask=cap_mask,
|
261 |
+
cfg_scale=cfg_scale,
|
262 |
+
cfg_trunc=1 - cfg_trunc,
|
263 |
+
renorm_cfg=renorm_cfg,
|
264 |
+
)
|
265 |
+
|
266 |
+
print(f"> Caption: {cap}")
|
267 |
+
print(f"> Number of sampling steps: {num_sampling_steps}")
|
268 |
+
print(f"> CFG scale: {cfg_scale}")
|
269 |
+
print("> Starting sampling...")
|
270 |
+
if solver == "dpm":
|
271 |
+
samples = sample_fn(z, steps=num_sampling_steps, order=2, skip_type="time_uniform_flow", method="multistep", flow_shift=t_shift)
|
272 |
+
else:
|
273 |
+
samples = sample_fn(z, model.forward_with_cfg, **model_kwargs)[-1]
|
274 |
+
samples = samples[:1]
|
275 |
+
print("Sample dtype:", samples.dtype)
|
276 |
+
|
277 |
+
vae_scale = {
|
278 |
+
"sdxl": 0.13025,
|
279 |
+
"sd3": 1.5305,
|
280 |
+
"ema": 0.18215,
|
281 |
+
"mse": 0.18215,
|
282 |
+
"cogvideox": 1.15258426,
|
283 |
+
"flux": 0.3611,
|
284 |
+
}["flux"]
|
285 |
+
vae_shift = {
|
286 |
+
"sdxl": 0.0,
|
287 |
+
"sd3": 0.0609,
|
288 |
+
"ema": 0.0,
|
289 |
+
"mse": 0.0,
|
290 |
+
"cogvideox": 0.0,
|
291 |
+
"flux": 0.1159,
|
292 |
+
}["flux"]
|
293 |
+
print(f"> VAE scale: {vae_scale}, shift: {vae_shift}")
|
294 |
+
print("Samples shape:", samples.shape)
|
295 |
+
samples = vae.decode(samples / vae_scale + vae_shift).sample
|
296 |
+
samples = (samples + 1.0) / 2.0
|
297 |
+
samples.clamp_(0.0, 1.0)
|
298 |
+
|
299 |
+
img = to_pil_image(samples[0].float())
|
300 |
+
print("> Generated image successfully.")
|
301 |
+
|
302 |
+
return img, metadata
|
303 |
+
except Exception:
|
304 |
+
print(traceback.format_exc())
|
305 |
+
return ModelFailure()
|
306 |
|
307 |
|
308 |
def none_or_str(value):
|
|
|
318 |
type=str,
|
319 |
default="Linear",
|
320 |
choices=["Linear", "GVP", "VP"],
|
321 |
+
help="Type of path for transport: 'Linear', 'GVP' (Geodesic Vector Pursuit), or 'VP' (Vector Pursuit).",
|
322 |
)
|
323 |
group.add_argument(
|
324 |
"--prediction",
|
325 |
type=str,
|
326 |
default="velocity",
|
327 |
choices=["velocity", "score", "noise"],
|
328 |
+
help="Prediction model for the transport dynamics.",
|
329 |
)
|
330 |
group.add_argument(
|
331 |
"--loss-weight",
|
332 |
type=none_or_str,
|
333 |
default=None,
|
334 |
choices=[None, "velocity", "likelihood"],
|
335 |
+
help="Weighting of different loss components: 'velocity', 'likelihood', or None.",
|
336 |
)
|
337 |
+
group.add_argument("--sample-eps", type=float, help="Sampling parameter in the transport model.")
|
338 |
+
group.add_argument("--train-eps", type=float, help="Training epsilon to stabilize learning.")
|
339 |
|
340 |
|
341 |
def parse_ode_args(parser):
|
|
|
352 |
default=1e-3,
|
353 |
help="Relative tolerance for the ODE solver.",
|
354 |
)
|
355 |
+
group.add_argument("--reverse", action="store_true", help="Run the ODE solver in reverse.")
|
356 |
group.add_argument(
|
357 |
"--likelihood",
|
358 |
action="store_true",
|
359 |
+
help="Enable likelihood calculation during the ODE solving process.",
|
360 |
)
|
361 |
|
362 |
|
|
|
368 |
return port
|
369 |
|
370 |
|
371 |
+
# Utility function to translate Korean text to English if needed.
|
372 |
+
def translate_if_korean(text: str) -> str:
|
373 |
+
import re
|
374 |
+
# Check if any Korean characters are present
|
375 |
+
if re.search(r"[ㄱ-ㅎㅏ-ㅣ가-힣]", text):
|
376 |
+
print("Translating Korean prompt to English...")
|
377 |
+
translation = translator(text)
|
378 |
+
# Return the translated text from the pipeline output
|
379 |
+
return translation[0]["translation_text"]
|
380 |
+
return text
|
381 |
+
|
382 |
+
|
383 |
def main():
|
384 |
parser = argparse.ArgumentParser()
|
385 |
|
386 |
parser.add_argument("--num_gpus", type=int, default=1)
|
387 |
+
parser.add_argument("--ckpt", type=str, default='/home/user/app/checkpoints', required=False)
|
388 |
parser.add_argument("--ema", action="store_true")
|
389 |
parser.add_argument("--precision", default="bf16", choices=["bf16", "fp32"])
|
390 |
+
parser.add_argument("--hf_token", type=str, default=None, help="Hugging Face read token for accessing gated repo.")
|
391 |
parser.add_argument("--res", type=int, default=1024, choices=[256, 512, 1024])
|
392 |
parser.add_argument("--port", type=int, default=12123)
|
393 |
|
|
|
405 |
|
406 |
description = "Lumina-Image 2.0 ([Github](https://github.com/Alpha-VLLM/Lumina-Image-2.0/tree/main))"
|
407 |
|
408 |
+
# Create a Gradio Blocks UI with custom CSS for a sleek, modern appearance.
|
409 |
+
custom_css = """
|
410 |
+
body {
|
411 |
+
background: linear-gradient(135deg, #1a2a6c, #b21f1f, #fdbb2d);
|
412 |
+
font-family: 'Helvetica', sans-serif;
|
413 |
+
color: #333;
|
414 |
+
}
|
415 |
+
.gradio-container {
|
416 |
+
background: #fff;
|
417 |
+
border-radius: 15px;
|
418 |
+
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.25);
|
419 |
+
padding: 20px;
|
420 |
+
}
|
421 |
+
.gradio-title {
|
422 |
+
font-weight: bold;
|
423 |
+
font-size: 1.5em;
|
424 |
+
text-align: center;
|
425 |
+
margin-bottom: 10px;
|
426 |
+
}
|
427 |
+
"""
|
428 |
+
|
429 |
+
with gr.Blocks(css=custom_css) as demo:
|
430 |
with gr.Row():
|
431 |
+
gr.Markdown(f"<div class='gradio-title'>{description}</div>")
|
432 |
with gr.Row():
|
433 |
with gr.Column():
|
434 |
cap = gr.Textbox(
|
|
|
445 |
value="",
|
446 |
placeholder="Enter a negative caption.",
|
447 |
)
|
448 |
+
default_value = "You are an assistant designed to generate high-quality images with the highest degree of image-text alignment based on textual prompts."
|
449 |
system_type = gr.Dropdown(
|
450 |
value=default_value,
|
451 |
choices=[
|
452 |
+
"You are an assistant designed to generate high-quality images with the highest degree of image-text alignment based on textual prompts.",
|
453 |
"You are an assistant designed to generate superior images with the superior degree of image-text alignment based on textual prompts or user prompts.",
|
454 |
"",
|
455 |
+
],
|
456 |
label="System Type",
|
457 |
)
|
458 |
|
459 |
with gr.Row():
|
460 |
res_choices = [f"{w}x{h}" for w, h in generate_crop_size_list((args.res // 64) ** 2, 64)]
|
461 |
+
default_value = "1024x1024"
|
|
|
462 |
resolution = gr.Dropdown(
|
463 |
value=default_value, choices=res_choices, label="Resolution"
|
464 |
)
|
|
|
469 |
value=40,
|
470 |
step=1,
|
471 |
interactive=True,
|
472 |
+
label="Sampling Steps",
|
473 |
)
|
474 |
seed = gr.Slider(
|
475 |
minimum=0,
|
|
|
491 |
solver = gr.Dropdown(
|
492 |
value="euler",
|
493 |
choices=["euler", "midpoint", "rk4"],
|
494 |
+
label="Solver",
|
495 |
)
|
496 |
t_shift = gr.Slider(
|
497 |
minimum=1,
|
|
|
499 |
value=6,
|
500 |
step=1,
|
501 |
interactive=True,
|
502 |
+
label="Time Shift",
|
503 |
)
|
504 |
cfg_scale = gr.Slider(
|
505 |
minimum=1.0,
|
506 |
maximum=20.0,
|
507 |
value=4.0,
|
508 |
interactive=True,
|
509 |
+
label="CFG Scale",
|
510 |
)
|
511 |
with gr.Row():
|
512 |
+
renorm_cfg = gr.Dropdown(
|
513 |
value=True,
|
514 |
choices=[True, False, 2.0],
|
515 |
label="CFG Renorm",
|
|
|
519 |
scaling_method = gr.Dropdown(
|
520 |
value="Time-aware",
|
521 |
choices=["Time-aware", "None"],
|
522 |
+
label="RoPE Scaling Method",
|
523 |
)
|
524 |
scaling_watershed = gr.Slider(
|
525 |
minimum=0.0,
|
526 |
maximum=1.0,
|
527 |
value=0.3,
|
528 |
interactive=True,
|
529 |
+
label="Linear/NTK Watershed",
|
530 |
)
|
531 |
with gr.Row():
|
532 |
proportional_attn = gr.Checkbox(
|
533 |
value=True,
|
534 |
interactive=True,
|
535 |
+
label="Proportional Attention",
|
536 |
)
|
537 |
with gr.Row():
|
538 |
submit_btn = gr.Button("Submit", variant="primary")
|
539 |
with gr.Column():
|
540 |
output_img = gr.Image(
|
541 |
+
label="Generated Image",
|
542 |
interactive=False,
|
543 |
)
|
544 |
with gr.Accordion(label="Generation Parameters", open=True):
|
545 |
+
gr_metadata = gr.JSON(label="Metadata", show_label=False)
|
546 |
|
547 |
with gr.Row():
|
548 |
+
prompts = [
|
549 |
+
"Close-up portrait of a young woman with light brown hair, looking to the right, illuminated by warm, golden sunlight. Her hair is gently tousled, catching the light and creating a halo effect around her head. She wears a white garment with a V-neck, visible in the lower left of the frame. The background is dark and out of focus, enhancing the contrast between her illuminated face and the shadows. Soft, ethereal lighting, high contrast, warm color palette, shallow depth of field, natural backlighting, serene and contemplative mood, cinematic quality, intimate and visually striking composition.",
|
550 |
+
"하늘을 나는 용, 신비로운 분위기, 구름 위를 날며 빛나는 비늘을 가진, 전설 속의 존재, 강렬한 색채와 디테일한 묘사.",
|
551 |
+
"Aesthetic photograph of a bouquet of pink and white ranunculus flowers in a clear glass vase, centrally positioned on a wooden surface. The flowers are in full bloom, displaying intricate layers of petals with a soft gradient from pale pink to white. The vase is filled with water, visible through the clear glass, and the stems are submerged. In the background, a blurred vase with green stems is partially visible, adding depth to the composition. The lighting is warm and natural, casting soft shadows and highlighting the delicate textures of the petals. The scene is serene and intimate, with a focus on the organic beauty of the flowers. Photorealistic, shallow depth of field, soft natural lighting, warm color palette, high contrast, glossy texture, tranquil, visually balanced.",
|
552 |
+
"한只优雅的白猫穿着一件紫色的旗袍,旗袍上绣有精致的牡丹花图案,显得高贵典雅。它头上戴着一朵金色的发饰,嘴里叼着一根象征好运的红色丝带。周围环绕着许多飘动的纸鹤和金色的光点,营造出一种祥瑞和梦幻的氛围。超写实风格。"
|
553 |
+
]
|
554 |
+
prompts = [[p] for p in prompts]
|
555 |
+
gr.Examples(prompts, [cap], label="Examples")
|
|
|
|
|
|
|
|
|
556 |
|
557 |
@spaces.GPU(duration=200)
|
558 |
+
def on_submit(cap, neg_cap, system_type, resolution, num_sampling_steps, cfg_scale, cfg_trunc, renorm_cfg, solver, t_shift, seed, scaling_method, scaling_watershed, proportional_attn, progress=gr.Progress(track_tqdm=True)):
|
559 |
+
# Translate the caption and negative caption if they contain Korean characters
|
560 |
+
cap = translate_if_korean(cap)
|
561 |
+
if neg_cap and neg_cap.strip():
|
562 |
+
neg_cap = translate_if_korean(neg_cap)
|
563 |
+
# Pack updated arguments and call inference
|
564 |
+
infer_args = (cap, neg_cap, system_type, resolution, num_sampling_steps, cfg_scale, cfg_trunc, renorm_cfg, solver, t_shift, seed, scaling_method, scaling_watershed, proportional_attn)
|
565 |
result = inference(args, infer_args, text_encoder, tokenizer, vae, model)
|
566 |
if isinstance(result, ModelFailure):
|
567 |
raise RuntimeError("Model failed to generate the image.")
|
|
|
568 |
return result
|
569 |
|
570 |
submit_btn.click(
|