Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files
models/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .model import NextDiT_2B_GQA_patch2_Adaln_Refiner, NextDiT_3B_GQA_patch2_Adaln_Refiner, NextDiT_4B_GQA_patch2_Adaln_Refiner, NextDiT_7B_GQA_patch2_Adaln_Refiner
|
models/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (361 Bytes). View file
|
|
|
models/__pycache__/components.cpython-310.pyc
ADDED
|
Binary file (2.16 kB). View file
|
|
|
models/__pycache__/model.cpython-310.pyc
ADDED
|
Binary file (23.3 kB). View file
|
|
|
models/components.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import warnings
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
try:
|
| 7 |
+
from apex.normalization import FusedRMSNorm as RMSNorm
|
| 8 |
+
except ImportError:
|
| 9 |
+
warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation")
|
| 10 |
+
|
| 11 |
+
class RMSNorm(torch.nn.Module):
|
| 12 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
| 13 |
+
"""
|
| 14 |
+
Initialize the RMSNorm normalization layer.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
dim (int): The dimension of the input tensor.
|
| 18 |
+
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
| 19 |
+
|
| 20 |
+
Attributes:
|
| 21 |
+
eps (float): A small value added to the denominator for numerical stability.
|
| 22 |
+
weight (nn.Parameter): Learnable scaling parameter.
|
| 23 |
+
|
| 24 |
+
"""
|
| 25 |
+
super().__init__()
|
| 26 |
+
self.eps = eps
|
| 27 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
| 28 |
+
|
| 29 |
+
def _norm(self, x):
|
| 30 |
+
"""
|
| 31 |
+
Apply the RMSNorm normalization to the input tensor.
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
x (torch.Tensor): The input tensor.
|
| 35 |
+
|
| 36 |
+
Returns:
|
| 37 |
+
torch.Tensor: The normalized tensor.
|
| 38 |
+
|
| 39 |
+
"""
|
| 40 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 41 |
+
|
| 42 |
+
def forward(self, x):
|
| 43 |
+
"""
|
| 44 |
+
Forward pass through the RMSNorm layer.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
x (torch.Tensor): The input tensor.
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
torch.Tensor: The output tensor after applying RMSNorm.
|
| 51 |
+
|
| 52 |
+
"""
|
| 53 |
+
output = self._norm(x.float()).type_as(x)
|
| 54 |
+
return output * self.weight
|
models/model.py
ADDED
|
@@ -0,0 +1,930 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
# --------------------------------------------------------
|
| 7 |
+
# References:
|
| 8 |
+
# GLIDE: https://github.com/openai/glide-text2im
|
| 9 |
+
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
|
| 10 |
+
# --------------------------------------------------------
|
| 11 |
+
|
| 12 |
+
import math
|
| 13 |
+
from typing import List, Optional, Tuple
|
| 14 |
+
|
| 15 |
+
from flash_attn import flash_attn_varlen_func
|
| 16 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
import torch.nn.functional as F
|
| 20 |
+
|
| 21 |
+
from .components import RMSNorm
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def modulate(x, scale):
|
| 25 |
+
return x * (1 + scale.unsqueeze(1))
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
#############################################################################
|
| 29 |
+
# Embedding Layers for Timesteps and Class Labels #
|
| 30 |
+
#############################################################################
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class TimestepEmbedder(nn.Module):
|
| 34 |
+
"""
|
| 35 |
+
Embeds scalar timesteps into vector representations.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 39 |
+
super().__init__()
|
| 40 |
+
self.mlp = nn.Sequential(
|
| 41 |
+
nn.Linear(
|
| 42 |
+
frequency_embedding_size,
|
| 43 |
+
hidden_size,
|
| 44 |
+
bias=True,
|
| 45 |
+
),
|
| 46 |
+
nn.SiLU(),
|
| 47 |
+
nn.Linear(
|
| 48 |
+
hidden_size,
|
| 49 |
+
hidden_size,
|
| 50 |
+
bias=True,
|
| 51 |
+
),
|
| 52 |
+
)
|
| 53 |
+
nn.init.normal_(self.mlp[0].weight, std=0.02)
|
| 54 |
+
nn.init.zeros_(self.mlp[0].bias)
|
| 55 |
+
nn.init.normal_(self.mlp[2].weight, std=0.02)
|
| 56 |
+
nn.init.zeros_(self.mlp[2].bias)
|
| 57 |
+
|
| 58 |
+
self.frequency_embedding_size = frequency_embedding_size
|
| 59 |
+
|
| 60 |
+
@staticmethod
|
| 61 |
+
def timestep_embedding(t, dim, max_period=10000):
|
| 62 |
+
"""
|
| 63 |
+
Create sinusoidal timestep embeddings.
|
| 64 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
| 65 |
+
These may be fractional.
|
| 66 |
+
:param dim: the dimension of the output.
|
| 67 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 68 |
+
:return: an (N, D) Tensor of positional embeddings.
|
| 69 |
+
"""
|
| 70 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
| 71 |
+
half = dim // 2
|
| 72 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
| 73 |
+
device=t.device
|
| 74 |
+
)
|
| 75 |
+
args = t[:, None].float() * freqs[None]
|
| 76 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 77 |
+
if dim % 2:
|
| 78 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 79 |
+
return embedding
|
| 80 |
+
|
| 81 |
+
def forward(self, t):
|
| 82 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 83 |
+
t_emb = self.mlp(t_freq.to(self.mlp[0].weight.dtype))
|
| 84 |
+
return t_emb
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
#############################################################################
|
| 88 |
+
# Core NextDiT Model #
|
| 89 |
+
#############################################################################
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class JointAttention(nn.Module):
|
| 93 |
+
"""Multi-head attention module."""
|
| 94 |
+
|
| 95 |
+
def __init__(
|
| 96 |
+
self,
|
| 97 |
+
dim: int,
|
| 98 |
+
n_heads: int,
|
| 99 |
+
n_kv_heads: Optional[int],
|
| 100 |
+
qk_norm: bool,
|
| 101 |
+
):
|
| 102 |
+
"""
|
| 103 |
+
Initialize the Attention module.
|
| 104 |
+
|
| 105 |
+
Args:
|
| 106 |
+
dim (int): Number of input dimensions.
|
| 107 |
+
n_heads (int): Number of heads.
|
| 108 |
+
n_kv_heads (Optional[int]): Number of kv heads, if using GQA.
|
| 109 |
+
|
| 110 |
+
"""
|
| 111 |
+
super().__init__()
|
| 112 |
+
self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
|
| 113 |
+
self.n_local_heads = n_heads
|
| 114 |
+
self.n_local_kv_heads = self.n_kv_heads
|
| 115 |
+
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
| 116 |
+
self.head_dim = dim // n_heads
|
| 117 |
+
|
| 118 |
+
self.qkv = nn.Linear(
|
| 119 |
+
dim,
|
| 120 |
+
(n_heads + self.n_kv_heads + self.n_kv_heads) * self.head_dim,
|
| 121 |
+
bias=False,
|
| 122 |
+
)
|
| 123 |
+
nn.init.xavier_uniform_(self.qkv.weight)
|
| 124 |
+
|
| 125 |
+
self.out = nn.Linear(
|
| 126 |
+
n_heads * self.head_dim,
|
| 127 |
+
dim,
|
| 128 |
+
bias=False,
|
| 129 |
+
)
|
| 130 |
+
nn.init.xavier_uniform_(self.out.weight)
|
| 131 |
+
|
| 132 |
+
if qk_norm:
|
| 133 |
+
self.q_norm = RMSNorm(self.head_dim)
|
| 134 |
+
self.k_norm = RMSNorm(self.head_dim)
|
| 135 |
+
else:
|
| 136 |
+
self.q_norm = self.k_norm = nn.Identity()
|
| 137 |
+
|
| 138 |
+
@staticmethod
|
| 139 |
+
def apply_rotary_emb(
|
| 140 |
+
x_in: torch.Tensor,
|
| 141 |
+
freqs_cis: torch.Tensor,
|
| 142 |
+
) -> torch.Tensor:
|
| 143 |
+
"""
|
| 144 |
+
Apply rotary embeddings to input tensors using the given frequency
|
| 145 |
+
tensor.
|
| 146 |
+
|
| 147 |
+
This function applies rotary embeddings to the given query 'xq' and
|
| 148 |
+
key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The
|
| 149 |
+
input tensors are reshaped as complex numbers, and the frequency tensor
|
| 150 |
+
is reshaped for broadcasting compatibility. The resulting tensors
|
| 151 |
+
contain rotary embeddings and are returned as real tensors.
|
| 152 |
+
|
| 153 |
+
Args:
|
| 154 |
+
x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings.
|
| 155 |
+
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex
|
| 156 |
+
exponentials.
|
| 157 |
+
|
| 158 |
+
Returns:
|
| 159 |
+
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor
|
| 160 |
+
and key tensor with rotary embeddings.
|
| 161 |
+
"""
|
| 162 |
+
with torch.cuda.amp.autocast(enabled=False):
|
| 163 |
+
x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2))
|
| 164 |
+
freqs_cis = freqs_cis.unsqueeze(2)
|
| 165 |
+
x_out = torch.view_as_real(x * freqs_cis).flatten(3)
|
| 166 |
+
return x_out.type_as(x_in)
|
| 167 |
+
|
| 168 |
+
# copied from huggingface modeling_llama.py
|
| 169 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 170 |
+
def _get_unpad_data(attention_mask):
|
| 171 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 172 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 173 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 174 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
| 175 |
+
return (
|
| 176 |
+
indices,
|
| 177 |
+
cu_seqlens,
|
| 178 |
+
max_seqlen_in_batch,
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 182 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 183 |
+
|
| 184 |
+
key_layer = index_first_axis(
|
| 185 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
| 186 |
+
indices_k,
|
| 187 |
+
)
|
| 188 |
+
value_layer = index_first_axis(
|
| 189 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
| 190 |
+
indices_k,
|
| 191 |
+
)
|
| 192 |
+
if query_length == kv_seq_len:
|
| 193 |
+
query_layer = index_first_axis(
|
| 194 |
+
query_layer.reshape(batch_size * kv_seq_len, self.n_local_heads, head_dim),
|
| 195 |
+
indices_k,
|
| 196 |
+
)
|
| 197 |
+
cu_seqlens_q = cu_seqlens_k
|
| 198 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 199 |
+
indices_q = indices_k
|
| 200 |
+
elif query_length == 1:
|
| 201 |
+
max_seqlen_in_batch_q = 1
|
| 202 |
+
cu_seqlens_q = torch.arange(
|
| 203 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 204 |
+
) # There is a memcpy here, that is very bad.
|
| 205 |
+
indices_q = cu_seqlens_q[:-1]
|
| 206 |
+
query_layer = query_layer.squeeze(1)
|
| 207 |
+
else:
|
| 208 |
+
# The -q_len: slice assumes left padding.
|
| 209 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 210 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 211 |
+
|
| 212 |
+
return (
|
| 213 |
+
query_layer,
|
| 214 |
+
key_layer,
|
| 215 |
+
value_layer,
|
| 216 |
+
indices_q,
|
| 217 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 218 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
def forward(
|
| 222 |
+
self,
|
| 223 |
+
x: torch.Tensor,
|
| 224 |
+
x_mask: torch.Tensor,
|
| 225 |
+
freqs_cis: torch.Tensor,
|
| 226 |
+
) -> torch.Tensor:
|
| 227 |
+
"""
|
| 228 |
+
|
| 229 |
+
Args:
|
| 230 |
+
x:
|
| 231 |
+
x_mask:
|
| 232 |
+
freqs_cis:
|
| 233 |
+
|
| 234 |
+
Returns:
|
| 235 |
+
|
| 236 |
+
"""
|
| 237 |
+
bsz, seqlen, _ = x.shape
|
| 238 |
+
dtype = x.dtype
|
| 239 |
+
|
| 240 |
+
xq, xk, xv = torch.split(
|
| 241 |
+
self.qkv(x),
|
| 242 |
+
[
|
| 243 |
+
self.n_local_heads * self.head_dim,
|
| 244 |
+
self.n_local_kv_heads * self.head_dim,
|
| 245 |
+
self.n_local_kv_heads * self.head_dim,
|
| 246 |
+
],
|
| 247 |
+
dim=-1,
|
| 248 |
+
)
|
| 249 |
+
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
| 250 |
+
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
| 251 |
+
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
| 252 |
+
xq = self.q_norm(xq)
|
| 253 |
+
xk = self.k_norm(xk)
|
| 254 |
+
xq = JointAttention.apply_rotary_emb(xq, freqs_cis=freqs_cis)
|
| 255 |
+
xk = JointAttention.apply_rotary_emb(xk, freqs_cis=freqs_cis)
|
| 256 |
+
xq, xk = xq.to(dtype), xk.to(dtype)
|
| 257 |
+
|
| 258 |
+
softmax_scale = math.sqrt(1 / self.head_dim)
|
| 259 |
+
|
| 260 |
+
if dtype in [torch.float16, torch.bfloat16]:
|
| 261 |
+
# begin var_len flash attn
|
| 262 |
+
(
|
| 263 |
+
query_states,
|
| 264 |
+
key_states,
|
| 265 |
+
value_states,
|
| 266 |
+
indices_q,
|
| 267 |
+
cu_seq_lens,
|
| 268 |
+
max_seq_lens,
|
| 269 |
+
) = self._upad_input(xq, xk, xv, x_mask, seqlen)
|
| 270 |
+
|
| 271 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 272 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 273 |
+
|
| 274 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 275 |
+
query_states,
|
| 276 |
+
key_states,
|
| 277 |
+
value_states,
|
| 278 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 279 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 280 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 281 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 282 |
+
dropout_p=0.0,
|
| 283 |
+
causal=False,
|
| 284 |
+
softmax_scale=softmax_scale,
|
| 285 |
+
)
|
| 286 |
+
output = pad_input(attn_output_unpad, indices_q, bsz, seqlen)
|
| 287 |
+
# end var_len_flash_attn
|
| 288 |
+
|
| 289 |
+
else:
|
| 290 |
+
n_rep = self.n_local_heads // self.n_local_kv_heads
|
| 291 |
+
if n_rep >= 1:
|
| 292 |
+
xk = xk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
| 293 |
+
xv = xv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
| 294 |
+
output = (
|
| 295 |
+
F.scaled_dot_product_attention(
|
| 296 |
+
xq.permute(0, 2, 1, 3),
|
| 297 |
+
xk.permute(0, 2, 1, 3),
|
| 298 |
+
xv.permute(0, 2, 1, 3),
|
| 299 |
+
attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_local_heads, seqlen, -1),
|
| 300 |
+
scale=softmax_scale,
|
| 301 |
+
)
|
| 302 |
+
.permute(0, 2, 1, 3)
|
| 303 |
+
.to(dtype)
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
output = output.flatten(-2)
|
| 307 |
+
|
| 308 |
+
return self.out(output)
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
class FeedForward(nn.Module):
|
| 312 |
+
def __init__(
|
| 313 |
+
self,
|
| 314 |
+
dim: int,
|
| 315 |
+
hidden_dim: int,
|
| 316 |
+
multiple_of: int,
|
| 317 |
+
ffn_dim_multiplier: Optional[float],
|
| 318 |
+
):
|
| 319 |
+
"""
|
| 320 |
+
Initialize the FeedForward module.
|
| 321 |
+
|
| 322 |
+
Args:
|
| 323 |
+
dim (int): Input dimension.
|
| 324 |
+
hidden_dim (int): Hidden dimension of the feedforward layer.
|
| 325 |
+
multiple_of (int): Value to ensure hidden dimension is a multiple
|
| 326 |
+
of this value.
|
| 327 |
+
ffn_dim_multiplier (float, optional): Custom multiplier for hidden
|
| 328 |
+
dimension. Defaults to None.
|
| 329 |
+
|
| 330 |
+
"""
|
| 331 |
+
super().__init__()
|
| 332 |
+
# custom dim factor multiplier
|
| 333 |
+
if ffn_dim_multiplier is not None:
|
| 334 |
+
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
| 335 |
+
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
| 336 |
+
|
| 337 |
+
self.w1 = nn.Linear(
|
| 338 |
+
dim,
|
| 339 |
+
hidden_dim,
|
| 340 |
+
bias=False,
|
| 341 |
+
)
|
| 342 |
+
nn.init.xavier_uniform_(self.w1.weight)
|
| 343 |
+
self.w2 = nn.Linear(
|
| 344 |
+
hidden_dim,
|
| 345 |
+
dim,
|
| 346 |
+
bias=False,
|
| 347 |
+
)
|
| 348 |
+
nn.init.xavier_uniform_(self.w2.weight)
|
| 349 |
+
self.w3 = nn.Linear(
|
| 350 |
+
dim,
|
| 351 |
+
hidden_dim,
|
| 352 |
+
bias=False,
|
| 353 |
+
)
|
| 354 |
+
nn.init.xavier_uniform_(self.w3.weight)
|
| 355 |
+
|
| 356 |
+
# @torch.compile
|
| 357 |
+
def _forward_silu_gating(self, x1, x3):
|
| 358 |
+
return F.silu(x1) * x3
|
| 359 |
+
|
| 360 |
+
def forward(self, x):
|
| 361 |
+
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
class JointTransformerBlock(nn.Module):
|
| 365 |
+
def __init__(
|
| 366 |
+
self,
|
| 367 |
+
layer_id: int,
|
| 368 |
+
dim: int,
|
| 369 |
+
n_heads: int,
|
| 370 |
+
n_kv_heads: int,
|
| 371 |
+
multiple_of: int,
|
| 372 |
+
ffn_dim_multiplier: float,
|
| 373 |
+
norm_eps: float,
|
| 374 |
+
qk_norm: bool,
|
| 375 |
+
modulation=True
|
| 376 |
+
) -> None:
|
| 377 |
+
"""
|
| 378 |
+
Initialize a TransformerBlock.
|
| 379 |
+
|
| 380 |
+
Args:
|
| 381 |
+
layer_id (int): Identifier for the layer.
|
| 382 |
+
dim (int): Embedding dimension of the input features.
|
| 383 |
+
n_heads (int): Number of attention heads.
|
| 384 |
+
n_kv_heads (Optional[int]): Number of attention heads in key and
|
| 385 |
+
value features (if using GQA), or set to None for the same as
|
| 386 |
+
query.
|
| 387 |
+
multiple_of (int):
|
| 388 |
+
ffn_dim_multiplier (float):
|
| 389 |
+
norm_eps (float):
|
| 390 |
+
|
| 391 |
+
"""
|
| 392 |
+
super().__init__()
|
| 393 |
+
self.dim = dim
|
| 394 |
+
self.head_dim = dim // n_heads
|
| 395 |
+
self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm)
|
| 396 |
+
self.feed_forward = FeedForward(
|
| 397 |
+
dim=dim,
|
| 398 |
+
hidden_dim=4 * dim,
|
| 399 |
+
multiple_of=multiple_of,
|
| 400 |
+
ffn_dim_multiplier=ffn_dim_multiplier,
|
| 401 |
+
)
|
| 402 |
+
self.layer_id = layer_id
|
| 403 |
+
self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
|
| 404 |
+
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
|
| 405 |
+
|
| 406 |
+
self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
|
| 407 |
+
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
|
| 408 |
+
|
| 409 |
+
self.modulation = modulation
|
| 410 |
+
if modulation:
|
| 411 |
+
self.adaLN_modulation = nn.Sequential(
|
| 412 |
+
nn.SiLU(),
|
| 413 |
+
nn.Linear(
|
| 414 |
+
min(dim, 1024),
|
| 415 |
+
4 * dim,
|
| 416 |
+
bias=True,
|
| 417 |
+
),
|
| 418 |
+
)
|
| 419 |
+
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
| 420 |
+
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
| 421 |
+
|
| 422 |
+
def forward(
|
| 423 |
+
self,
|
| 424 |
+
x: torch.Tensor,
|
| 425 |
+
x_mask: torch.Tensor,
|
| 426 |
+
freqs_cis: torch.Tensor,
|
| 427 |
+
adaln_input: Optional[torch.Tensor]=None,
|
| 428 |
+
):
|
| 429 |
+
"""
|
| 430 |
+
Perform a forward pass through the TransformerBlock.
|
| 431 |
+
|
| 432 |
+
Args:
|
| 433 |
+
x (torch.Tensor): Input tensor.
|
| 434 |
+
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
|
| 435 |
+
|
| 436 |
+
Returns:
|
| 437 |
+
torch.Tensor: Output tensor after applying attention and
|
| 438 |
+
feedforward layers.
|
| 439 |
+
|
| 440 |
+
"""
|
| 441 |
+
if self.modulation:
|
| 442 |
+
assert adaln_input is not None
|
| 443 |
+
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1)
|
| 444 |
+
|
| 445 |
+
x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2(
|
| 446 |
+
self.attention(
|
| 447 |
+
modulate(self.attention_norm1(x), scale_msa),
|
| 448 |
+
x_mask,
|
| 449 |
+
freqs_cis,
|
| 450 |
+
)
|
| 451 |
+
)
|
| 452 |
+
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
|
| 453 |
+
self.feed_forward(
|
| 454 |
+
modulate(self.ffn_norm1(x), scale_mlp),
|
| 455 |
+
)
|
| 456 |
+
)
|
| 457 |
+
else:
|
| 458 |
+
assert adaln_input is None
|
| 459 |
+
x = x + self.attention_norm2(
|
| 460 |
+
self.attention(
|
| 461 |
+
self.attention_norm1(x),
|
| 462 |
+
x_mask,
|
| 463 |
+
freqs_cis,
|
| 464 |
+
)
|
| 465 |
+
)
|
| 466 |
+
x = x + self.ffn_norm2(
|
| 467 |
+
self.feed_forward(
|
| 468 |
+
self.ffn_norm1(x),
|
| 469 |
+
)
|
| 470 |
+
)
|
| 471 |
+
return x
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
class FinalLayer(nn.Module):
|
| 475 |
+
"""
|
| 476 |
+
The final layer of NextDiT.
|
| 477 |
+
"""
|
| 478 |
+
|
| 479 |
+
def __init__(self, hidden_size, patch_size, out_channels):
|
| 480 |
+
super().__init__()
|
| 481 |
+
self.norm_final = nn.LayerNorm(
|
| 482 |
+
hidden_size,
|
| 483 |
+
elementwise_affine=False,
|
| 484 |
+
eps=1e-6,
|
| 485 |
+
)
|
| 486 |
+
self.linear = nn.Linear(
|
| 487 |
+
hidden_size,
|
| 488 |
+
patch_size * patch_size * out_channels,
|
| 489 |
+
bias=True,
|
| 490 |
+
)
|
| 491 |
+
nn.init.zeros_(self.linear.weight)
|
| 492 |
+
nn.init.zeros_(self.linear.bias)
|
| 493 |
+
|
| 494 |
+
self.adaLN_modulation = nn.Sequential(
|
| 495 |
+
nn.SiLU(),
|
| 496 |
+
nn.Linear(
|
| 497 |
+
min(hidden_size, 1024),
|
| 498 |
+
hidden_size,
|
| 499 |
+
bias=True,
|
| 500 |
+
),
|
| 501 |
+
)
|
| 502 |
+
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
| 503 |
+
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
| 504 |
+
|
| 505 |
+
def forward(self, x, c):
|
| 506 |
+
scale = self.adaLN_modulation(c)
|
| 507 |
+
x = modulate(self.norm_final(x), scale)
|
| 508 |
+
x = self.linear(x)
|
| 509 |
+
return x
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
class RopeEmbedder:
|
| 513 |
+
def __init__(
|
| 514 |
+
self, theta: float = 10000.0, axes_dims: List[int] = (16, 56, 56), axes_lens: List[int] = (1, 512, 512)
|
| 515 |
+
):
|
| 516 |
+
super().__init__()
|
| 517 |
+
self.theta = theta
|
| 518 |
+
self.axes_dims = axes_dims
|
| 519 |
+
self.axes_lens = axes_lens
|
| 520 |
+
self.freqs_cis = NextDiT.precompute_freqs_cis(self.axes_dims, self.axes_lens, theta=self.theta)
|
| 521 |
+
|
| 522 |
+
def __call__(self, ids: torch.Tensor):
|
| 523 |
+
self.freqs_cis = [freqs_cis.to(ids.device) for freqs_cis in self.freqs_cis]
|
| 524 |
+
result = []
|
| 525 |
+
for i in range(len(self.axes_dims)):
|
| 526 |
+
# import torch.distributed as dist
|
| 527 |
+
# if not dist.is_initialized() or dist.get_rank() == 0:
|
| 528 |
+
# import pdb
|
| 529 |
+
# pdb.set_trace()
|
| 530 |
+
index = ids[:, :, i:i+1].repeat(1, 1, self.freqs_cis[i].shape[-1]).to(torch.int64)
|
| 531 |
+
result.append(torch.gather(self.freqs_cis[i].unsqueeze(0).repeat(index.shape[0], 1, 1), dim=1, index=index))
|
| 532 |
+
return torch.cat(result, dim=-1)
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
class NextDiT(nn.Module):
|
| 536 |
+
"""
|
| 537 |
+
Diffusion model with a Transformer backbone.
|
| 538 |
+
"""
|
| 539 |
+
|
| 540 |
+
def __init__(
|
| 541 |
+
self,
|
| 542 |
+
patch_size: int = 2,
|
| 543 |
+
in_channels: int = 4,
|
| 544 |
+
dim: int = 4096,
|
| 545 |
+
n_layers: int = 32,
|
| 546 |
+
n_refiner_layers: int = 2,
|
| 547 |
+
n_heads: int = 32,
|
| 548 |
+
n_kv_heads: Optional[int] = None,
|
| 549 |
+
multiple_of: int = 256,
|
| 550 |
+
ffn_dim_multiplier: Optional[float] = None,
|
| 551 |
+
norm_eps: float = 1e-5,
|
| 552 |
+
qk_norm: bool = False,
|
| 553 |
+
cap_feat_dim: int = 5120,
|
| 554 |
+
axes_dims: List[int] = (16, 56, 56),
|
| 555 |
+
axes_lens: List[int] = (1, 512, 512),
|
| 556 |
+
) -> None:
|
| 557 |
+
super().__init__()
|
| 558 |
+
self.in_channels = in_channels
|
| 559 |
+
self.out_channels = in_channels
|
| 560 |
+
self.patch_size = patch_size
|
| 561 |
+
|
| 562 |
+
self.x_embedder = nn.Linear(
|
| 563 |
+
in_features=patch_size * patch_size * in_channels,
|
| 564 |
+
out_features=dim,
|
| 565 |
+
bias=True,
|
| 566 |
+
)
|
| 567 |
+
nn.init.xavier_uniform_(self.x_embedder.weight)
|
| 568 |
+
nn.init.constant_(self.x_embedder.bias, 0.0)
|
| 569 |
+
|
| 570 |
+
self.noise_refiner = nn.ModuleList(
|
| 571 |
+
[
|
| 572 |
+
JointTransformerBlock(
|
| 573 |
+
layer_id,
|
| 574 |
+
dim,
|
| 575 |
+
n_heads,
|
| 576 |
+
n_kv_heads,
|
| 577 |
+
multiple_of,
|
| 578 |
+
ffn_dim_multiplier,
|
| 579 |
+
norm_eps,
|
| 580 |
+
qk_norm,
|
| 581 |
+
modulation=True,
|
| 582 |
+
)
|
| 583 |
+
for layer_id in range(n_refiner_layers)
|
| 584 |
+
]
|
| 585 |
+
)
|
| 586 |
+
self.context_refiner = nn.ModuleList(
|
| 587 |
+
[
|
| 588 |
+
JointTransformerBlock(
|
| 589 |
+
layer_id,
|
| 590 |
+
dim,
|
| 591 |
+
n_heads,
|
| 592 |
+
n_kv_heads,
|
| 593 |
+
multiple_of,
|
| 594 |
+
ffn_dim_multiplier,
|
| 595 |
+
norm_eps,
|
| 596 |
+
qk_norm,
|
| 597 |
+
modulation=False,
|
| 598 |
+
)
|
| 599 |
+
for layer_id in range(n_refiner_layers)
|
| 600 |
+
]
|
| 601 |
+
)
|
| 602 |
+
|
| 603 |
+
self.t_embedder = TimestepEmbedder(min(dim, 1024))
|
| 604 |
+
self.cap_embedder = nn.Sequential(
|
| 605 |
+
RMSNorm(cap_feat_dim, eps=norm_eps),
|
| 606 |
+
nn.Linear(
|
| 607 |
+
cap_feat_dim,
|
| 608 |
+
dim,
|
| 609 |
+
bias=True,
|
| 610 |
+
),
|
| 611 |
+
)
|
| 612 |
+
nn.init.trunc_normal_(self.cap_embedder[1].weight, std=0.02)
|
| 613 |
+
# nn.init.zeros_(self.cap_embedder[1].weight)
|
| 614 |
+
nn.init.zeros_(self.cap_embedder[1].bias)
|
| 615 |
+
|
| 616 |
+
self.layers = nn.ModuleList(
|
| 617 |
+
[
|
| 618 |
+
JointTransformerBlock(
|
| 619 |
+
layer_id,
|
| 620 |
+
dim,
|
| 621 |
+
n_heads,
|
| 622 |
+
n_kv_heads,
|
| 623 |
+
multiple_of,
|
| 624 |
+
ffn_dim_multiplier,
|
| 625 |
+
norm_eps,
|
| 626 |
+
qk_norm,
|
| 627 |
+
)
|
| 628 |
+
for layer_id in range(n_layers)
|
| 629 |
+
]
|
| 630 |
+
)
|
| 631 |
+
self.norm_final = RMSNorm(dim, eps=norm_eps)
|
| 632 |
+
self.final_layer = FinalLayer(dim, patch_size, self.out_channels)
|
| 633 |
+
|
| 634 |
+
assert (dim // n_heads) == sum(axes_dims)
|
| 635 |
+
self.axes_dims = axes_dims
|
| 636 |
+
self.axes_lens = axes_lens
|
| 637 |
+
self.rope_embedder = RopeEmbedder(axes_dims=axes_dims, axes_lens=axes_lens)
|
| 638 |
+
self.dim = dim
|
| 639 |
+
self.n_heads = n_heads
|
| 640 |
+
|
| 641 |
+
def unpatchify(
|
| 642 |
+
self, x: torch.Tensor, img_size: List[Tuple[int, int]], cap_size: List[int], return_tensor=False
|
| 643 |
+
) -> List[torch.Tensor]:
|
| 644 |
+
"""
|
| 645 |
+
x: (N, T, patch_size**2 * C)
|
| 646 |
+
imgs: (N, H, W, C)
|
| 647 |
+
"""
|
| 648 |
+
pH = pW = self.patch_size
|
| 649 |
+
imgs = []
|
| 650 |
+
for i in range(x.size(0)):
|
| 651 |
+
H, W = img_size[i]
|
| 652 |
+
begin = cap_size[i]
|
| 653 |
+
end = begin + (H // pH) * (W // pW)
|
| 654 |
+
imgs.append(
|
| 655 |
+
x[i][begin:end]
|
| 656 |
+
.view(H // pH, W // pW, pH, pW, self.out_channels)
|
| 657 |
+
.permute(4, 0, 2, 1, 3)
|
| 658 |
+
.flatten(3, 4)
|
| 659 |
+
.flatten(1, 2)
|
| 660 |
+
)
|
| 661 |
+
|
| 662 |
+
if return_tensor:
|
| 663 |
+
imgs = torch.stack(imgs, dim=0)
|
| 664 |
+
return imgs
|
| 665 |
+
|
| 666 |
+
def patchify_and_embed(
|
| 667 |
+
self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor
|
| 668 |
+
) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], List[int], torch.Tensor]:
|
| 669 |
+
bsz = len(x)
|
| 670 |
+
pH = pW = self.patch_size
|
| 671 |
+
device = x[0].device
|
| 672 |
+
|
| 673 |
+
l_effective_cap_len = cap_mask.sum(dim=1).tolist()
|
| 674 |
+
img_sizes = [(img.size(1), img.size(2)) for img in x]
|
| 675 |
+
l_effective_img_len = [(H // pH) * (W // pW) for (H, W) in img_sizes]
|
| 676 |
+
|
| 677 |
+
max_seq_len = max(
|
| 678 |
+
(cap_len+img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len))
|
| 679 |
+
)
|
| 680 |
+
max_cap_len = max(l_effective_cap_len)
|
| 681 |
+
max_img_len = max(l_effective_img_len)
|
| 682 |
+
|
| 683 |
+
position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.int32, device=device)
|
| 684 |
+
|
| 685 |
+
for i in range(bsz):
|
| 686 |
+
cap_len = l_effective_cap_len[i]
|
| 687 |
+
img_len = l_effective_img_len[i]
|
| 688 |
+
H, W = img_sizes[i]
|
| 689 |
+
H_tokens, W_tokens = H // pH, W // pW
|
| 690 |
+
assert H_tokens * W_tokens == img_len
|
| 691 |
+
|
| 692 |
+
position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.int32, device=device)
|
| 693 |
+
position_ids[i, cap_len:cap_len+img_len, 0] = cap_len
|
| 694 |
+
row_ids = torch.arange(H_tokens, dtype=torch.int32, device=device).view(-1, 1).repeat(1, W_tokens).flatten()
|
| 695 |
+
col_ids = torch.arange(W_tokens, dtype=torch.int32, device=device).view(1, -1).repeat(H_tokens, 1).flatten()
|
| 696 |
+
position_ids[i, cap_len:cap_len+img_len, 1] = row_ids
|
| 697 |
+
position_ids[i, cap_len:cap_len+img_len, 2] = col_ids
|
| 698 |
+
|
| 699 |
+
freqs_cis = self.rope_embedder(position_ids)
|
| 700 |
+
|
| 701 |
+
# build freqs_cis for cap and image individually
|
| 702 |
+
cap_freqs_cis_shape = list(freqs_cis.shape)
|
| 703 |
+
# cap_freqs_cis_shape[1] = max_cap_len
|
| 704 |
+
cap_freqs_cis_shape[1] = cap_feats.shape[1]
|
| 705 |
+
cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
|
| 706 |
+
|
| 707 |
+
img_freqs_cis_shape = list(freqs_cis.shape)
|
| 708 |
+
img_freqs_cis_shape[1] = max_img_len
|
| 709 |
+
img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
|
| 710 |
+
|
| 711 |
+
for i in range(bsz):
|
| 712 |
+
cap_len = l_effective_cap_len[i]
|
| 713 |
+
img_len = l_effective_img_len[i]
|
| 714 |
+
cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len]
|
| 715 |
+
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len:cap_len+img_len]
|
| 716 |
+
|
| 717 |
+
# refine context
|
| 718 |
+
for layer in self.context_refiner:
|
| 719 |
+
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis)
|
| 720 |
+
|
| 721 |
+
# refine image
|
| 722 |
+
flat_x = []
|
| 723 |
+
for i in range(bsz):
|
| 724 |
+
img = x[i]
|
| 725 |
+
C, H, W = img.size()
|
| 726 |
+
img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 2, 4, 0).flatten(2).flatten(0, 1)
|
| 727 |
+
flat_x.append(img)
|
| 728 |
+
x = flat_x
|
| 729 |
+
padded_img_embed = torch.zeros(bsz, max_img_len, x[0].shape[-1], device=device, dtype=x[0].dtype)
|
| 730 |
+
padded_img_mask = torch.zeros(bsz, max_img_len, dtype=torch.bool, device=device)
|
| 731 |
+
for i in range(bsz):
|
| 732 |
+
padded_img_embed[i, :l_effective_img_len[i]] = x[i]
|
| 733 |
+
padded_img_mask[i, :l_effective_img_len[i]] = True
|
| 734 |
+
|
| 735 |
+
padded_img_embed = self.x_embedder(padded_img_embed)
|
| 736 |
+
for layer in self.noise_refiner:
|
| 737 |
+
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t)
|
| 738 |
+
|
| 739 |
+
mask = torch.zeros(bsz, max_seq_len, dtype=torch.bool, device=device)
|
| 740 |
+
padded_full_embed = torch.zeros(bsz, max_seq_len, self.dim, device=device, dtype=x[0].dtype)
|
| 741 |
+
for i in range(bsz):
|
| 742 |
+
cap_len = l_effective_cap_len[i]
|
| 743 |
+
img_len = l_effective_img_len[i]
|
| 744 |
+
|
| 745 |
+
mask[i, :cap_len+img_len] = True
|
| 746 |
+
padded_full_embed[i, :cap_len] = cap_feats[i, :cap_len]
|
| 747 |
+
padded_full_embed[i, cap_len:cap_len+img_len] = padded_img_embed[i, :img_len]
|
| 748 |
+
|
| 749 |
+
return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis
|
| 750 |
+
|
| 751 |
+
|
| 752 |
+
def forward(self, x, t, cap_feats, cap_mask):
|
| 753 |
+
"""
|
| 754 |
+
Forward pass of NextDiT.
|
| 755 |
+
t: (N,) tensor of diffusion timesteps
|
| 756 |
+
y: (N,) tensor of text tokens/features
|
| 757 |
+
"""
|
| 758 |
+
|
| 759 |
+
# import torch.distributed as dist
|
| 760 |
+
# if not dist.is_initialized() or dist.get_rank() == 0:
|
| 761 |
+
# import pdb
|
| 762 |
+
# pdb.set_trace()
|
| 763 |
+
# torch.save([x, t, cap_feats, cap_mask], "./fake_input.pt")
|
| 764 |
+
t = self.t_embedder(t) # (N, D)
|
| 765 |
+
adaln_input = t
|
| 766 |
+
|
| 767 |
+
cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute
|
| 768 |
+
|
| 769 |
+
x_is_tensor = isinstance(x, torch.Tensor)
|
| 770 |
+
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t)
|
| 771 |
+
freqs_cis = freqs_cis.to(x.device)
|
| 772 |
+
|
| 773 |
+
for layer in self.layers:
|
| 774 |
+
x = layer(x, mask, freqs_cis, adaln_input)
|
| 775 |
+
|
| 776 |
+
x = self.final_layer(x, adaln_input)
|
| 777 |
+
x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)
|
| 778 |
+
|
| 779 |
+
return x
|
| 780 |
+
|
| 781 |
+
def forward_with_cfg(
|
| 782 |
+
self,
|
| 783 |
+
x,
|
| 784 |
+
t,
|
| 785 |
+
cap_feats,
|
| 786 |
+
cap_mask,
|
| 787 |
+
cfg_scale,
|
| 788 |
+
cfg_trunc=1,
|
| 789 |
+
renorm_cfg=1
|
| 790 |
+
):
|
| 791 |
+
"""
|
| 792 |
+
Forward pass of NextDiT, but also batches the unconditional forward pass
|
| 793 |
+
for classifier-free guidance.
|
| 794 |
+
"""
|
| 795 |
+
# # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
|
| 796 |
+
half = x[: len(x) // 2]
|
| 797 |
+
if t[0] < cfg_trunc:
|
| 798 |
+
combined = torch.cat([half, half], dim=0) # [2, 16, 128, 128]
|
| 799 |
+
model_out = self.forward(combined, t, cap_feats, cap_mask) # [2, 16, 128, 128]
|
| 800 |
+
# For exact reproducibility reasons, we apply classifier-free guidance on only
|
| 801 |
+
# three channels by default. The standard approach to cfg applies it to all channels.
|
| 802 |
+
# This can be done by uncommenting the following line and commenting-out the line following that.
|
| 803 |
+
eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :]
|
| 804 |
+
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
|
| 805 |
+
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
|
| 806 |
+
if float(renorm_cfg) > 0.0:
|
| 807 |
+
ori_pos_norm = torch.linalg.vector_norm(cond_eps
|
| 808 |
+
, dim=tuple(range(1, len(cond_eps.shape))), keepdim=True
|
| 809 |
+
)
|
| 810 |
+
max_new_norm = ori_pos_norm * float(renorm_cfg)
|
| 811 |
+
new_pos_norm = torch.linalg.vector_norm(
|
| 812 |
+
half_eps, dim=tuple(range(1, len(half_eps.shape))), keepdim=True
|
| 813 |
+
)
|
| 814 |
+
if new_pos_norm >= max_new_norm:
|
| 815 |
+
half_eps = half_eps * (max_new_norm / new_pos_norm)
|
| 816 |
+
else:
|
| 817 |
+
combined = half
|
| 818 |
+
model_out = self.forward(combined, t[:len(x) // 2], cap_feats[:len(x) // 2], cap_mask[:len(x) // 2])
|
| 819 |
+
eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :]
|
| 820 |
+
half_eps = eps
|
| 821 |
+
|
| 822 |
+
output = torch.cat([half_eps, half_eps], dim=0)
|
| 823 |
+
return output
|
| 824 |
+
|
| 825 |
+
@staticmethod
|
| 826 |
+
def precompute_freqs_cis(
|
| 827 |
+
dim: List[int],
|
| 828 |
+
end: List[int],
|
| 829 |
+
theta: float = 10000.0,
|
| 830 |
+
):
|
| 831 |
+
"""
|
| 832 |
+
Precompute the frequency tensor for complex exponentials (cis) with
|
| 833 |
+
given dimensions.
|
| 834 |
+
|
| 835 |
+
This function calculates a frequency tensor with complex exponentials
|
| 836 |
+
using the given dimension 'dim' and the end index 'end'. The 'theta'
|
| 837 |
+
parameter scales the frequencies. The returned tensor contains complex
|
| 838 |
+
values in complex64 data type.
|
| 839 |
+
|
| 840 |
+
Args:
|
| 841 |
+
dim (list): Dimension of the frequency tensor.
|
| 842 |
+
end (list): End index for precomputing frequencies.
|
| 843 |
+
theta (float, optional): Scaling factor for frequency computation.
|
| 844 |
+
Defaults to 10000.0.
|
| 845 |
+
|
| 846 |
+
Returns:
|
| 847 |
+
torch.Tensor: Precomputed frequency tensor with complex
|
| 848 |
+
exponentials.
|
| 849 |
+
"""
|
| 850 |
+
freqs_cis = []
|
| 851 |
+
for i, (d, e) in enumerate(zip(dim, end)):
|
| 852 |
+
freqs = 1.0 / (theta ** (torch.arange(0, d, 2, dtype=torch.float64, device="cpu") / d))
|
| 853 |
+
timestep = torch.arange(e, device=freqs.device, dtype=torch.float64)
|
| 854 |
+
freqs = torch.outer(timestep, freqs).float()
|
| 855 |
+
freqs_cis_i = torch.polar(torch.ones_like(freqs), freqs).to(torch.complex64) # complex64
|
| 856 |
+
freqs_cis.append(freqs_cis_i)
|
| 857 |
+
|
| 858 |
+
return freqs_cis
|
| 859 |
+
|
| 860 |
+
def parameter_count(self) -> int:
|
| 861 |
+
total_params = 0
|
| 862 |
+
|
| 863 |
+
def _recursive_count_params(module):
|
| 864 |
+
nonlocal total_params
|
| 865 |
+
for param in module.parameters(recurse=False):
|
| 866 |
+
total_params += param.numel()
|
| 867 |
+
for submodule in module.children():
|
| 868 |
+
_recursive_count_params(submodule)
|
| 869 |
+
|
| 870 |
+
_recursive_count_params(self)
|
| 871 |
+
return total_params
|
| 872 |
+
|
| 873 |
+
def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
|
| 874 |
+
return list(self.layers)
|
| 875 |
+
|
| 876 |
+
def get_checkpointing_wrap_module_list(self) -> List[nn.Module]:
|
| 877 |
+
return list(self.layers)
|
| 878 |
+
|
| 879 |
+
|
| 880 |
+
#############################################################################
|
| 881 |
+
# NextDiT Configs #
|
| 882 |
+
#############################################################################
|
| 883 |
+
|
| 884 |
+
def NextDiT_2B_GQA_patch2_Adaln_Refiner(**kwargs):
|
| 885 |
+
return NextDiT(
|
| 886 |
+
patch_size=2,
|
| 887 |
+
dim=2304,
|
| 888 |
+
n_layers=26,
|
| 889 |
+
n_heads=24,
|
| 890 |
+
n_kv_heads=8,
|
| 891 |
+
axes_dims=[32, 32, 32],
|
| 892 |
+
axes_lens=[300, 512, 512],
|
| 893 |
+
**kwargs
|
| 894 |
+
)
|
| 895 |
+
|
| 896 |
+
def NextDiT_3B_GQA_patch2_Adaln_Refiner(**kwargs):
|
| 897 |
+
return NextDiT(
|
| 898 |
+
patch_size=2,
|
| 899 |
+
dim=2592,
|
| 900 |
+
n_layers=30,
|
| 901 |
+
n_heads=24,
|
| 902 |
+
n_kv_heads=8,
|
| 903 |
+
axes_dims=[36, 36, 36],
|
| 904 |
+
axes_lens=[300, 512, 512],
|
| 905 |
+
**kwargs,
|
| 906 |
+
)
|
| 907 |
+
|
| 908 |
+
def NextDiT_4B_GQA_patch2_Adaln_Refiner(**kwargs):
|
| 909 |
+
return NextDiT(
|
| 910 |
+
patch_size=2,
|
| 911 |
+
dim=2880,
|
| 912 |
+
n_layers=32,
|
| 913 |
+
n_heads=24,
|
| 914 |
+
n_kv_heads=8,
|
| 915 |
+
axes_dims=[40, 40, 40],
|
| 916 |
+
axes_lens=[300, 512, 512],
|
| 917 |
+
**kwargs,
|
| 918 |
+
)
|
| 919 |
+
|
| 920 |
+
def NextDiT_7B_GQA_patch2_Adaln_Refiner(**kwargs):
|
| 921 |
+
return NextDiT(
|
| 922 |
+
patch_size=2,
|
| 923 |
+
dim=3840,
|
| 924 |
+
n_layers=32,
|
| 925 |
+
n_heads=32,
|
| 926 |
+
n_kv_heads=8,
|
| 927 |
+
axes_dims=[40, 40, 40],
|
| 928 |
+
axes_lens=[300, 512, 512],
|
| 929 |
+
**kwargs,
|
| 930 |
+
)
|