File size: 11,980 Bytes
a38a851
 
827cb17
a38a851
 
 
 
 
 
 
 
827cb17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a38a851
 
 
 
 
 
827cb17
 
 
 
 
a38a851
 
 
 
 
 
 
 
 
 
827cb17
1d8062c
a38a851
 
1d8062c
a38a851
827cb17
a38a851
 
 
 
 
 
 
 
 
 
 
 
 
 
1d8062c
a38a851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d8062c
 
 
a38a851
 
 
 
 
 
 
 
 
 
 
 
 
827cb17
 
 
 
 
a38a851
 
 
 
 
 
 
 
 
 
 
 
 
 
827cb17
 
 
 
a38a851
 
 
 
 
 
 
 
 
 
1d8062c
 
827cb17
 
 
a38a851
 
 
 
 
 
 
 
 
 
 
 
1d8062c
 
 
 
 
a38a851
 
827cb17
 
 
 
 
 
 
 
 
 
 
 
 
 
a38a851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d8062c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a38a851
1d8062c
48c62ff
1d8062c
bd608a9
a38a851
1d8062c
 
 
 
c26cedb
1d8062c
 
 
 
 
 
 
 
 
 
 
827cb17
1d8062c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61efe62
1d8062c
 
 
 
 
 
 
 
 
 
a38a851
1d8062c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM, pipeline as translation_pipeline
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from PIL import Image
import numpy as np
import os
import time
from Upsample import RealESRGAN
import spaces  # Import spaces for ZeroGPU compatibility
import re

# ๋ฒˆ์—ญ ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™” (ํ•œ๊ธ€ โ†’ ์˜์–ด)
translator = translation_pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

def translate_if_korean(prompt: str) -> str:
    """ํ”„๋กฌํ”„ํŠธ์— ํ•œ๊ธ€์ด ํฌํ•จ๋˜์–ด ์žˆ์œผ๋ฉด ์˜์–ด๋กœ ๋ฒˆ์—ญ"""
    if re.search(r'[ใ„ฑ-ใ…Žใ…-ใ…ฃ๊ฐ€-ํžฃ]', prompt):
        try:
            translation = translator(prompt)[0]['translation_text']
            return translation
        except Exception as e:
            print(f"Translation error: {e}")
            return prompt
    return prompt

# Load model and processor
model_path = "deepseek-ai/Janus-Pro-7B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(
    model_path,
    language_config=language_config,
    trust_remote_code=True
)
if torch.cuda.is_available():
    vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
else:
    vl_gpt = vl_gpt.to(torch.float16)

vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'

# SR model
sr_model = RealESRGAN(torch.device(cuda_device), scale=2)
sr_model.load_weights('weights/RealESRGAN_x2.pth', download=False)

@torch.inference_mode()
@spaces.GPU(duration=120)
def multimodal_understanding(image, question, seed, top_p, temperature):
    # (์ƒ๋žต) ๊ธฐ์กด multimodal ์ดํ•ด ํ•จ์ˆ˜ ๋‚ด์šฉ ๊ทธ๋Œ€๋กœ...
    torch.cuda.empty_cache()
    torch.manual_seed(seed)
    np.random.seed(seed)
    torch.cuda.manual_seed(seed)
    
    conversation = [
        {
            "role": "<|User|>",
            "content": f"<image_placeholder>\n{question}",
            "images": [image],
        },
        {"role": "<|Assistant|>", "content": ""},
    ]
    
    pil_images = [Image.fromarray(image)] if isinstance(image, np.ndarray) else [image]
    prepare_inputs = vl_chat_processor(
        conversations=conversation, images=pil_images, force_batchify=True
    ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
    
    inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
    
    outputs = vl_gpt.language_model.generate(
        inputs_embeds=inputs_embeds,
        attention_mask=prepare_inputs.attention_mask,
        pad_token_id=tokenizer.eos_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        max_new_tokens=512,
        do_sample=False if temperature == 0 else True,
        use_cache=True,
        temperature=temperature,
        top_p=top_p,
    )
    
    answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
    return answer

def generate(input_ids, width, height, temperature: float = 1,
             parallel_size: int = 5, cfg_weight: float = 5,
             image_token_num_per_image: int = 576, patch_size: int = 16):
    torch.cuda.empty_cache()
    
    tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
    for i in range(parallel_size * 2):
        tokens[i, :] = input_ids
        if i % 2 != 0:
            tokens[i, 1:-1] = vl_chat_processor.pad_id
    inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
    generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)

    pkv = None
    for i in range(image_token_num_per_image):
        with torch.no_grad():
            outputs = vl_gpt.language_model.model(
                inputs_embeds=inputs_embeds,
                use_cache=True,
                past_key_values=pkv
            )
            pkv = outputs.past_key_values
            hidden_states = outputs.last_hidden_state
            logits = vl_gpt.gen_head(hidden_states[:, -1, :])
            logit_cond = logits[0::2, :]
            logit_uncond = logits[1::2, :]
            logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
            probs = torch.softmax(logits / temperature, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            generated_tokens[:, i] = next_token.squeeze(dim=-1)
            next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)

            img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
            inputs_embeds = img_embeds.unsqueeze(dim=1)
    
    patches = vl_gpt.gen_vision_model.decode_code(
        generated_tokens.to(dtype=torch.int),
        shape=[parallel_size, 8, width // patch_size, height // patch_size]
    )
    return generated_tokens.to(dtype=torch.int), patches

def unpack(dec, width, height, parallel_size=5):
    dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
    dec = np.clip((dec + 1) / 2 * 255, 0, 255)
    visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
    visual_img[:, :, :] = dec
    return visual_img

@torch.inference_mode()
@spaces.GPU(duration=120)
def generate_image(prompt, seed=None, guidance=5, t2i_temperature=1.0):
    # ๋ฒˆ์—ญ: ์ž…๋ ฅ ํ”„๋กฌํ”„ํŠธ์— ํ•œ๊ธ€์ด ํฌํ•จ๋˜์–ด ์žˆ์œผ๋ฉด ์˜์–ด๋กœ ๋ณ€ํ™˜
    prompt = translate_if_korean(prompt)
    
    torch.cuda.empty_cache()
    if seed is not None:
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        np.random.seed(seed)
    width = 384
    height = 384
    parallel_size = 5
    
    with torch.no_grad():
        messages = [{'role': '<|User|>', 'content': prompt},
                    {'role': '<|Assistant|>', 'content': ''}]
        text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
            conversations=messages,
            sft_format=vl_chat_processor.sft_format,
            system_prompt=''
        )
        text = text + vl_chat_processor.image_start_tag
        input_ids = torch.LongTensor(tokenizer.encode(text))
        output, patches = generate(
            input_ids,
            width // 16 * 16,
            height // 16 * 16,
            cfg_weight=guidance,
            parallel_size=parallel_size,
            temperature=t2i_temperature
        )
        images = unpack(
            patches,
            width // 16 * 16,
            height // 16 * 16,
            parallel_size=parallel_size
        )

        stime = time.time()
        ret_images = [image_upsample(Image.fromarray(images[i])) for i in range(parallel_size)]
        print(f'upsample time: {time.time() - stime}')
        return ret_images

@spaces.GPU(duration=60)
def image_upsample(img: Image.Image) -> Image.Image:
    if img is None:
        raise Exception("Image not uploaded")
    width, height = img.size
    if width >= 5000 or height >= 5000:
        raise Exception("The image is too large.")
    global sr_model
    result = sr_model.predict(img.convert('RGB'))
    return result

# Custom CSS for a sleek, modern and highly readable interface
custom_css = """
body {
    background: #f0f2f5;
    font-family: 'Segoe UI', sans-serif;
    color: #333;
}
h1, h2, h3 {
    font-weight: 600;
}
.gradio-container {
    padding: 20px;
}
header {
    text-align: center;
    padding: 20px;
    margin-bottom: 20px;
}
header h1 {
    font-size: 3em;
    color: #2c3e50;
}
.gr-button {
    background-color: #3498db !important;
    color: #fff !important;
    border: none !important;
    padding: 10px 20px !important;
    border-radius: 5px !important;
    font-size: 1em !important;
}
.gr-button:hover {
    background-color: #2980b9 !important;
}
.gr-input, .gr-slider, .gr-number, .gr-textbox {
    border-radius: 5px;
}
.gr-gallery-item {
    border-radius: 10px;
    overflow: hidden;
    box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
"""

# Gradio Interface
with gr.Blocks(css=custom_css, title="Multimodal & T2I") as demo:
    with gr.Column(variant="panel"):
        gr.Markdown("<header><h1>Chat With Janus-Pro-7B</h1></header>")
        
        with gr.Tabs():
            with gr.TabItem("Multimodal Understanding"):
                gr.Markdown("### Chat with Images")
                with gr.Row():
                    image_input = gr.Image(label="Upload Image", type="numpy")
                    with gr.Column():
                        question_input = gr.Textbox(label="Question", placeholder="Enter your question about the image here...", lines=4)
                        und_seed_input = gr.Number(label="Seed", precision=0, value=42)
                        top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="Top_p")
                        temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="Temperature")
                understanding_button = gr.Button("Chat", elem_id="understanding-button")
                understanding_output = gr.Textbox(label="Response", lines=6)
                with gr.Accordion("Examples", open=False):
                    gr.Examples(
                        label="Multimodal Understanding Examples",
                        examples=[
                            ["explain this meme", "doge.png"]
                        ],
                        inputs=[question_input, image_input],
                    )
                understanding_button.click(
                    multimodal_understanding,
                    inputs=[image_input, question_input, und_seed_input, top_p, temperature],
                    outputs=understanding_output,
                )
            
            with gr.TabItem("Text-to-Image Generation"):
                gr.Markdown("### Generate Images from Text")
                with gr.Row():
                    prompt_input = gr.Textbox(label="Prompt", placeholder="Enter detailed prompt for image generation...", lines=4)
                with gr.Row():
                    seed_input = gr.Number(label="Seed (Optional)", precision=0, value=1234)
                    cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
                    t2i_temperature = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="Temperature")
                generation_button = gr.Button("Generate Images", elem_id="generation-button")
                image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)
                with gr.Accordion("Examples", open=False):
                    gr.Examples(
                        label="Text-to-Image Examples",
                        examples=[
                            "Master shifu racoon wearing drip attire as a street gangster.",
                            "The face of a beautiful girl",
                            "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
                            "A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting, immortal, fluffy, shiny mane, petals, fairyism, unreal engine 5 and Octane Render, highly detailed, photorealistic, cinematic, natural colors.",
                            "๊ณ ์–‘์ด๊ฐ€ ์šฐ์ฃผ๋ณต์„ ์ž…๊ณ  ๋‹ฌ์— ์žˆ๋Š” ๋ชจ์Šต"
                        ],
                        inputs=prompt_input,
                    )
                generation_button.click(
                    fn=generate_image,
                    inputs=[prompt_input, seed_input, cfg_weight_input, t2i_temperature],
                    outputs=image_output,
                )
        
    gr.Markdown("<footer style='text-align:center; padding:20px 0;'>Join our community on <a href='https://discord.gg/openfreeai' target='_blank'>Discord</a></footer>")

demo.launch(share=True)