Spaces:
Runtime error
Runtime error
Create vae.py
Browse files- lib_layerdiffuse/vae.py +447 -0
lib_layerdiffuse/vae.py
ADDED
|
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
import torch
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
import safetensors.torch as sf
|
| 6 |
+
from accelerate.logging import get_logger
|
| 7 |
+
logger = get_logger(__name__, log_level="INFO")
|
| 8 |
+
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
from typing import Optional, Tuple
|
| 11 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 12 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 13 |
+
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
|
| 14 |
+
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
|
| 15 |
+
|
| 16 |
+
import torchvision
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def zero_module(module):
|
| 20 |
+
"""
|
| 21 |
+
Zero out the parameters of a module and return it.
|
| 22 |
+
"""
|
| 23 |
+
for p in module.parameters():
|
| 24 |
+
p.detach().zero_()
|
| 25 |
+
return module
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class LatentTransparencyOffsetEncoder(torch.nn.Module):
|
| 29 |
+
def __init__(self, latent_c=4, *args, **kwargs):
|
| 30 |
+
super().__init__(*args, **kwargs)
|
| 31 |
+
self.blocks = torch.nn.Sequential(
|
| 32 |
+
torch.nn.Conv2d(4, 32, kernel_size=3, padding=1, stride=1),
|
| 33 |
+
nn.SiLU(),
|
| 34 |
+
torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1),
|
| 35 |
+
nn.SiLU(),
|
| 36 |
+
torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2),
|
| 37 |
+
nn.SiLU(),
|
| 38 |
+
torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1),
|
| 39 |
+
nn.SiLU(),
|
| 40 |
+
torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2),
|
| 41 |
+
nn.SiLU(),
|
| 42 |
+
torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1),
|
| 43 |
+
nn.SiLU(),
|
| 44 |
+
torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),
|
| 45 |
+
nn.SiLU(),
|
| 46 |
+
torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
|
| 47 |
+
nn.SiLU(),
|
| 48 |
+
zero_module(torch.nn.Conv2d(256, latent_c, kernel_size=3, padding=1, stride=1)),
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
def __call__(self, x):
|
| 52 |
+
return self.blocks(x)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# 1024 * 1024 * 3 -> 16 * 16 * 512 -> 1024 * 1024 * 3
|
| 56 |
+
class UNet1024(ModelMixin, ConfigMixin):
|
| 57 |
+
@register_to_config
|
| 58 |
+
def __init__(
|
| 59 |
+
self,
|
| 60 |
+
in_channels: int = 3,
|
| 61 |
+
out_channels: int = 3,
|
| 62 |
+
down_block_types: Tuple[str] = ("DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
|
| 63 |
+
up_block_types: Tuple[str] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D"),
|
| 64 |
+
block_out_channels: Tuple[int] = (32, 32, 64, 128, 256, 512, 512),
|
| 65 |
+
layers_per_block: int = 2,
|
| 66 |
+
mid_block_scale_factor: float = 1,
|
| 67 |
+
downsample_padding: int = 1,
|
| 68 |
+
downsample_type: str = "conv",
|
| 69 |
+
upsample_type: str = "conv",
|
| 70 |
+
dropout: float = 0.0,
|
| 71 |
+
act_fn: str = "silu",
|
| 72 |
+
attention_head_dim: Optional[int] = 8,
|
| 73 |
+
norm_num_groups: int = 4,
|
| 74 |
+
norm_eps: float = 1e-5,
|
| 75 |
+
latent_c: int = 4,
|
| 76 |
+
):
|
| 77 |
+
super().__init__()
|
| 78 |
+
|
| 79 |
+
# input
|
| 80 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
| 81 |
+
self.latent_conv_in = zero_module(nn.Conv2d(latent_c, block_out_channels[2], kernel_size=1))
|
| 82 |
+
|
| 83 |
+
self.down_blocks = nn.ModuleList([])
|
| 84 |
+
self.mid_block = None
|
| 85 |
+
self.up_blocks = nn.ModuleList([])
|
| 86 |
+
|
| 87 |
+
# down
|
| 88 |
+
output_channel = block_out_channels[0]
|
| 89 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 90 |
+
input_channel = output_channel
|
| 91 |
+
output_channel = block_out_channels[i]
|
| 92 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 93 |
+
|
| 94 |
+
down_block = get_down_block(
|
| 95 |
+
down_block_type,
|
| 96 |
+
num_layers=layers_per_block,
|
| 97 |
+
in_channels=input_channel,
|
| 98 |
+
out_channels=output_channel,
|
| 99 |
+
temb_channels=None,
|
| 100 |
+
add_downsample=not is_final_block,
|
| 101 |
+
resnet_eps=norm_eps,
|
| 102 |
+
resnet_act_fn=act_fn,
|
| 103 |
+
resnet_groups=norm_num_groups,
|
| 104 |
+
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
|
| 105 |
+
downsample_padding=downsample_padding,
|
| 106 |
+
resnet_time_scale_shift="default",
|
| 107 |
+
downsample_type=downsample_type,
|
| 108 |
+
dropout=dropout,
|
| 109 |
+
)
|
| 110 |
+
self.down_blocks.append(down_block)
|
| 111 |
+
|
| 112 |
+
# mid
|
| 113 |
+
self.mid_block = UNetMidBlock2D(
|
| 114 |
+
in_channels=block_out_channels[-1],
|
| 115 |
+
temb_channels=None,
|
| 116 |
+
dropout=dropout,
|
| 117 |
+
resnet_eps=norm_eps,
|
| 118 |
+
resnet_act_fn=act_fn,
|
| 119 |
+
output_scale_factor=mid_block_scale_factor,
|
| 120 |
+
resnet_time_scale_shift="default",
|
| 121 |
+
attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1],
|
| 122 |
+
resnet_groups=norm_num_groups,
|
| 123 |
+
attn_groups=None,
|
| 124 |
+
add_attention=True,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# up
|
| 128 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 129 |
+
output_channel = reversed_block_out_channels[0]
|
| 130 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 131 |
+
prev_output_channel = output_channel
|
| 132 |
+
output_channel = reversed_block_out_channels[i]
|
| 133 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
| 134 |
+
|
| 135 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 136 |
+
|
| 137 |
+
up_block = get_up_block(
|
| 138 |
+
up_block_type,
|
| 139 |
+
num_layers=layers_per_block + 1,
|
| 140 |
+
in_channels=input_channel,
|
| 141 |
+
out_channels=output_channel,
|
| 142 |
+
prev_output_channel=prev_output_channel,
|
| 143 |
+
temb_channels=None,
|
| 144 |
+
add_upsample=not is_final_block,
|
| 145 |
+
resnet_eps=norm_eps,
|
| 146 |
+
resnet_act_fn=act_fn,
|
| 147 |
+
resnet_groups=norm_num_groups,
|
| 148 |
+
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
|
| 149 |
+
resnet_time_scale_shift="default",
|
| 150 |
+
upsample_type=upsample_type,
|
| 151 |
+
dropout=dropout,
|
| 152 |
+
)
|
| 153 |
+
self.up_blocks.append(up_block)
|
| 154 |
+
prev_output_channel = output_channel
|
| 155 |
+
|
| 156 |
+
# out
|
| 157 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
|
| 158 |
+
self.conv_act = nn.SiLU()
|
| 159 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
|
| 160 |
+
|
| 161 |
+
def forward(self, x, latent):
|
| 162 |
+
sample_latent = self.latent_conv_in(latent)
|
| 163 |
+
sample = self.conv_in(x)
|
| 164 |
+
emb = None
|
| 165 |
+
|
| 166 |
+
down_block_res_samples = (sample,)
|
| 167 |
+
for i, downsample_block in enumerate(self.down_blocks):
|
| 168 |
+
if i == 3:
|
| 169 |
+
sample = sample + sample_latent
|
| 170 |
+
|
| 171 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 172 |
+
down_block_res_samples += res_samples
|
| 173 |
+
|
| 174 |
+
sample = self.mid_block(sample, emb)
|
| 175 |
+
|
| 176 |
+
for upsample_block in self.up_blocks:
|
| 177 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 178 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
| 179 |
+
sample = upsample_block(sample, res_samples, emb)
|
| 180 |
+
|
| 181 |
+
sample = self.conv_norm_out(sample)
|
| 182 |
+
sample = self.conv_act(sample)
|
| 183 |
+
sample = self.conv_out(sample)
|
| 184 |
+
return sample
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def checkerboard(shape):
|
| 188 |
+
return np.indices(shape).sum(axis=0) % 2
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def build_alpha_pyramid(color, alpha, dk=1.2):
|
| 192 |
+
# Written by lvmin at Stanford
|
| 193 |
+
# Massive iterative Gaussian filters are mathematically consistent to pyramid.
|
| 194 |
+
|
| 195 |
+
pyramid = []
|
| 196 |
+
current_premultiplied_color = color * alpha
|
| 197 |
+
current_alpha = alpha
|
| 198 |
+
|
| 199 |
+
while True:
|
| 200 |
+
pyramid.append((current_premultiplied_color, current_alpha))
|
| 201 |
+
|
| 202 |
+
H, W, C = current_alpha.shape
|
| 203 |
+
if min(H, W) == 1:
|
| 204 |
+
break
|
| 205 |
+
|
| 206 |
+
current_premultiplied_color = cv2.resize(current_premultiplied_color, (int(W / dk), int(H / dk)), interpolation=cv2.INTER_AREA)
|
| 207 |
+
current_alpha = cv2.resize(current_alpha, (int(W / dk), int(H / dk)), interpolation=cv2.INTER_AREA)[:, :, None]
|
| 208 |
+
return pyramid[::-1]
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def pad_rgb(np_rgba_hwc_uint8):
|
| 212 |
+
# Written by lvmin at Stanford
|
| 213 |
+
# Massive iterative Gaussian filters are mathematically consistent to pyramid.
|
| 214 |
+
|
| 215 |
+
np_rgba_hwc = np_rgba_hwc_uint8.astype(np.float32) #/ 255.0
|
| 216 |
+
pyramid = build_alpha_pyramid(color=np_rgba_hwc[..., :3], alpha=np_rgba_hwc[..., 3:])
|
| 217 |
+
|
| 218 |
+
top_c, top_a = pyramid[0]
|
| 219 |
+
fg = np.sum(top_c, axis=(0, 1), keepdims=True) / np.sum(top_a, axis=(0, 1), keepdims=True).clip(1e-8, 1e32)
|
| 220 |
+
|
| 221 |
+
for layer_c, layer_a in pyramid:
|
| 222 |
+
layer_h, layer_w, _ = layer_c.shape
|
| 223 |
+
fg = cv2.resize(fg, (layer_w, layer_h), interpolation=cv2.INTER_LINEAR)
|
| 224 |
+
fg = layer_c + fg * (1.0 - layer_a)
|
| 225 |
+
|
| 226 |
+
return fg
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def dist_sample_deterministic(dist: DiagonalGaussianDistribution, perturbation: torch.Tensor):
|
| 230 |
+
# Modified from diffusers.models.autoencoders.vae.DiagonalGaussianDistribution.sample()
|
| 231 |
+
x = dist.mean + dist.std * perturbation.to(dist.std)
|
| 232 |
+
return x
|
| 233 |
+
|
| 234 |
+
class TransparentVAE(torch.nn.Module):
|
| 235 |
+
def __init__(self, sd_vae, dtype=torch.float16, encoder_file=None, decoder_file=None, alpha=300.0, latent_c=16, *args, **kwargs):
|
| 236 |
+
super().__init__(*args, **kwargs)
|
| 237 |
+
self.dtype = dtype
|
| 238 |
+
|
| 239 |
+
self.sd_vae = sd_vae
|
| 240 |
+
self.sd_vae.to(dtype=self.dtype)
|
| 241 |
+
self.sd_vae.requires_grad_(False)
|
| 242 |
+
|
| 243 |
+
self.encoder = LatentTransparencyOffsetEncoder(latent_c=latent_c)
|
| 244 |
+
if encoder_file is not None:
|
| 245 |
+
temp = sf.load_file(encoder_file)
|
| 246 |
+
# del temp['blocks.16.weight']
|
| 247 |
+
# del temp['blocks.16.bias']
|
| 248 |
+
self.encoder.load_state_dict(temp, strict=True)
|
| 249 |
+
del temp
|
| 250 |
+
self.encoder.to(dtype=self.dtype)
|
| 251 |
+
self.alpha = alpha
|
| 252 |
+
|
| 253 |
+
self.decoder = UNet1024(in_channels=3, out_channels=4, latent_c=latent_c)
|
| 254 |
+
if decoder_file is not None:
|
| 255 |
+
temp = sf.load_file(decoder_file)
|
| 256 |
+
# del temp['latent_conv_in.weight']
|
| 257 |
+
# del temp['latent_conv_in.bias']
|
| 258 |
+
self.decoder.load_state_dict(temp, strict=True)
|
| 259 |
+
del temp
|
| 260 |
+
self.decoder.to(dtype=self.dtype)
|
| 261 |
+
self.latent_c = latent_c
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
def sd_decode(self, latent):
|
| 265 |
+
return self.sd_vae.decode(latent)
|
| 266 |
+
|
| 267 |
+
def decode(self, latent, aug=True):
|
| 268 |
+
origin_pixel = self.sd_vae.decode(latent).sample
|
| 269 |
+
origin_pixel = (origin_pixel * 0.5 + 0.5)
|
| 270 |
+
if not aug:
|
| 271 |
+
y = self.decoder(origin_pixel.to(self.dtype), latent.to(self.dtype))
|
| 272 |
+
return origin_pixel, y
|
| 273 |
+
list_y = []
|
| 274 |
+
for i in range(int(latent.shape[0])):
|
| 275 |
+
y = self.estimate_augmented(origin_pixel[i:i + 1].to(self.dtype), latent[i:i + 1].to(self.dtype))
|
| 276 |
+
list_y.append(y)
|
| 277 |
+
y = torch.concat(list_y, dim=0)
|
| 278 |
+
return origin_pixel, y
|
| 279 |
+
|
| 280 |
+
def encode(self, img_rgba, img_rgb, padded_img_rgb, use_offset=True):
|
| 281 |
+
a_bchw_01 = img_rgba[:, 3:, :, :]
|
| 282 |
+
vae_feed = img_rgb.to(device=self.sd_vae.device, dtype=self.sd_vae.dtype)
|
| 283 |
+
latent_dist = self.sd_vae.encode(vae_feed).latent_dist
|
| 284 |
+
offset_feed = torch.cat([padded_img_rgb, a_bchw_01], dim=1).to(device=self.sd_vae.device, dtype=self.dtype)
|
| 285 |
+
offset = self.encoder(offset_feed) * self.alpha
|
| 286 |
+
if use_offset:
|
| 287 |
+
latent = dist_sample_deterministic(dist=latent_dist, perturbation=offset)
|
| 288 |
+
latent = self.sd_vae.config.scaling_factor * (latent - self.sd_vae.config.shift_factor)
|
| 289 |
+
else:
|
| 290 |
+
latent = latent_dist.sample()
|
| 291 |
+
latent = self.sd_vae.config.scaling_factor * (latent - self.sd_vae.config.shift_factor)
|
| 292 |
+
return latent
|
| 293 |
+
|
| 294 |
+
def forward(self, img_rgba, img_rgb, padded_img_rgb, use_offset=True):
|
| 295 |
+
return self.decode(self.encode(img_rgba, img_rgb, padded_img_rgb, use_offset))
|
| 296 |
+
|
| 297 |
+
@property
|
| 298 |
+
def device(self):
|
| 299 |
+
return next(self.parameters()).device
|
| 300 |
+
|
| 301 |
+
@torch.no_grad()
|
| 302 |
+
def estimate_augmented(self, pixel, latent):
|
| 303 |
+
args = [
|
| 304 |
+
[False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3],
|
| 305 |
+
]
|
| 306 |
+
|
| 307 |
+
result = []
|
| 308 |
+
|
| 309 |
+
for flip, rok in tqdm(args):
|
| 310 |
+
feed_pixel = pixel.clone()
|
| 311 |
+
feed_latent = latent.clone()
|
| 312 |
+
|
| 313 |
+
if flip:
|
| 314 |
+
feed_pixel = torch.flip(feed_pixel, dims=(3,))
|
| 315 |
+
feed_latent = torch.flip(feed_latent, dims=(3,))
|
| 316 |
+
|
| 317 |
+
feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3))
|
| 318 |
+
feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3))
|
| 319 |
+
|
| 320 |
+
eps = self.decoder(feed_pixel, feed_latent).clip(0, 1)
|
| 321 |
+
eps = torch.rot90(eps, k=-rok, dims=(2, 3))
|
| 322 |
+
|
| 323 |
+
if flip:
|
| 324 |
+
eps = torch.flip(eps, dims=(3,))
|
| 325 |
+
|
| 326 |
+
result += [eps]
|
| 327 |
+
|
| 328 |
+
result = torch.stack(result, dim=0)
|
| 329 |
+
median = torch.median(result, dim=0).values
|
| 330 |
+
return median
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
class TransparentVAEDecoder(torch.nn.Module):
|
| 335 |
+
def __init__(self, filename, dtype=torch.float16, *args, **kwargs):
|
| 336 |
+
super().__init__(*args, **kwargs)
|
| 337 |
+
sd = sf.load_file(filename)
|
| 338 |
+
model = UNet1024(in_channels=3, out_channels=4)
|
| 339 |
+
model.load_state_dict(sd, strict=True)
|
| 340 |
+
model.to(dtype=dtype)
|
| 341 |
+
model.eval()
|
| 342 |
+
self.model = model
|
| 343 |
+
self.dtype = dtype
|
| 344 |
+
return
|
| 345 |
+
|
| 346 |
+
@torch.no_grad()
|
| 347 |
+
def estimate_single_pass(self, pixel, latent):
|
| 348 |
+
y = self.model(pixel, latent)
|
| 349 |
+
return y
|
| 350 |
+
|
| 351 |
+
@torch.no_grad()
|
| 352 |
+
def estimate_augmented(self, pixel, latent):
|
| 353 |
+
args = [
|
| 354 |
+
[False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3],
|
| 355 |
+
]
|
| 356 |
+
|
| 357 |
+
result = []
|
| 358 |
+
|
| 359 |
+
for flip, rok in tqdm(args):
|
| 360 |
+
feed_pixel = pixel.clone()
|
| 361 |
+
feed_latent = latent.clone()
|
| 362 |
+
|
| 363 |
+
if flip:
|
| 364 |
+
feed_pixel = torch.flip(feed_pixel, dims=(3,))
|
| 365 |
+
feed_latent = torch.flip(feed_latent, dims=(3,))
|
| 366 |
+
|
| 367 |
+
feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3))
|
| 368 |
+
feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3))
|
| 369 |
+
|
| 370 |
+
eps = self.estimate_single_pass(feed_pixel, feed_latent).clip(0, 1)
|
| 371 |
+
eps = torch.rot90(eps, k=-rok, dims=(2, 3))
|
| 372 |
+
|
| 373 |
+
if flip:
|
| 374 |
+
eps = torch.flip(eps, dims=(3,))
|
| 375 |
+
|
| 376 |
+
result += [eps]
|
| 377 |
+
|
| 378 |
+
result = torch.stack(result, dim=0)
|
| 379 |
+
median = torch.median(result, dim=0).values
|
| 380 |
+
return median
|
| 381 |
+
|
| 382 |
+
@torch.no_grad()
|
| 383 |
+
def forward(self, sd_vae, latent):
|
| 384 |
+
pixel = sd_vae.decode(latent).sample
|
| 385 |
+
pixel = (pixel * 0.5 + 0.5).clip(0, 1).to(self.dtype)
|
| 386 |
+
latent = latent.to(self.dtype)
|
| 387 |
+
result_list = []
|
| 388 |
+
vis_list = []
|
| 389 |
+
|
| 390 |
+
for i in range(int(latent.shape[0])):
|
| 391 |
+
y = self.estimate_augmented(pixel[i:i + 1], latent[i:i + 1])
|
| 392 |
+
|
| 393 |
+
y = y.clip(0, 1).movedim(1, -1)
|
| 394 |
+
alpha = y[..., :1]
|
| 395 |
+
fg = y[..., 1:]
|
| 396 |
+
|
| 397 |
+
B, H, W, C = fg.shape
|
| 398 |
+
cb = checkerboard(shape=(H // 64, W // 64))
|
| 399 |
+
cb = cv2.resize(cb, (W, H), interpolation=cv2.INTER_NEAREST)
|
| 400 |
+
cb = (0.5 + (cb - 0.5) * 0.1)[None, ..., None]
|
| 401 |
+
cb = torch.from_numpy(cb).to(fg)
|
| 402 |
+
|
| 403 |
+
vis = (fg * alpha + cb * (1 - alpha))[0]
|
| 404 |
+
vis = (vis * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8)
|
| 405 |
+
vis_list.append(vis)
|
| 406 |
+
|
| 407 |
+
png = torch.cat([fg, alpha], dim=3)[0]
|
| 408 |
+
png = (png * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8)
|
| 409 |
+
result_list.append(png)
|
| 410 |
+
|
| 411 |
+
return result_list, vis_list
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
class TransparentVAEEncoder(torch.nn.Module):
|
| 415 |
+
def __init__(self, filename, dtype=torch.float16, alpha=300.0, *args, **kwargs):
|
| 416 |
+
super().__init__(*args, **kwargs)
|
| 417 |
+
sd = sf.load_file(filename)
|
| 418 |
+
self.dtype = dtype
|
| 419 |
+
|
| 420 |
+
model = LatentTransparencyOffsetEncoder()
|
| 421 |
+
model.load_state_dict(sd, strict=True)
|
| 422 |
+
model.to(dtype=self.dtype)
|
| 423 |
+
model.eval()
|
| 424 |
+
|
| 425 |
+
self.model = model
|
| 426 |
+
|
| 427 |
+
# similar to LoRA's alpha to avoid initial zero-initialized outputs being too small
|
| 428 |
+
self.alpha = alpha
|
| 429 |
+
return
|
| 430 |
+
|
| 431 |
+
@torch.no_grad()
|
| 432 |
+
def forward(self, sd_vae, list_of_np_rgba_hwc_uint8, use_offset=True):
|
| 433 |
+
list_of_np_rgb_padded = [pad_rgb(x) for x in list_of_np_rgba_hwc_uint8]
|
| 434 |
+
rgb_padded_bchw_01 = torch.from_numpy(np.stack(list_of_np_rgb_padded, axis=0)).float().movedim(-1, 1)
|
| 435 |
+
rgba_bchw_01 = torch.from_numpy(np.stack(list_of_np_rgba_hwc_uint8, axis=0)).float().movedim(-1, 1) / 255.0
|
| 436 |
+
rgb_bchw_01 = rgba_bchw_01[:, :3, :, :]
|
| 437 |
+
a_bchw_01 = rgba_bchw_01[:, 3:, :, :]
|
| 438 |
+
vae_feed = (rgb_bchw_01 * 2.0 - 1.0) * a_bchw_01
|
| 439 |
+
vae_feed = vae_feed.to(device=sd_vae.device, dtype=sd_vae.dtype)
|
| 440 |
+
latent_dist = sd_vae.encode(vae_feed).latent_dist
|
| 441 |
+
offset_feed = torch.cat([a_bchw_01, rgb_padded_bchw_01], dim=1).to(device=sd_vae.device, dtype=self.dtype)
|
| 442 |
+
offset = self.model(offset_feed) * self.alpha
|
| 443 |
+
if use_offset:
|
| 444 |
+
latent = dist_sample_deterministic(dist=latent_dist, perturbation=offset)
|
| 445 |
+
else:
|
| 446 |
+
latent = latent_dist.sample()
|
| 447 |
+
return latent
|