import gradio as gr import numpy as np import spaces import torch import random import json import os from PIL import Image from diffusers import FluxKontextPipeline from diffusers.utils import load_image from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard from safetensors.torch import load_file import requests import re # Load Kontext model MAX_SEED = np.iinfo(np.int32).max pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda") # Load LoRA data (you'll need to create this JSON file or modify to load your LoRAs) with open("flux_loras.json", "r") as file: data = json.load(file) flux_loras_raw = [ { "image": item["image"], "title": item["title"], "repo": item["repo"], "trigger_word": item.get("trigger_word", ""), "trigger_position": item.get("trigger_position", "prepend"), "weights": item.get("weights", "pytorch_lora_weights.safetensors"), } for item in data ] print(f"Loaded {len(flux_loras_raw)} LoRAs from JSON") # Global variables for LoRA management current_lora = None lora_cache = {} def load_lora_weights(repo_id, weights_filename): """Load LoRA weights from HuggingFace""" try: if repo_id not in lora_cache: lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename) lora_cache[repo_id] = lora_path return lora_cache[repo_id] except Exception as e: print(f"Error loading LoRA from {repo_id}: {e}") return None def update_selection(selected_state: gr.SelectData, flux_loras): """Update UI when a LoRA is selected""" if selected_state.index >= len(flux_loras): return "### No LoRA selected", gr.update(), None lora_repo = flux_loras[selected_state.index]["repo"] trigger_word = flux_loras[selected_state.index]["trigger_word"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})" new_placeholder = f"optional description, e.g. 'a man with glasses and a beard'" return updated_text, gr.update(placeholder=new_placeholder), selected_state.index def get_huggingface_lora(link): """Download LoRA from HuggingFace link""" split_link = link.split("/") if len(split_link) == 2: try: model_card = ModelCard.load(link) trigger_word = model_card.data.get("instance_prompt", "") fs = HfFileSystem() list_of_files = fs.ls(link, detail=False) safetensors_file = None for file in list_of_files: if file.endswith(".safetensors") and "lora" in file.lower(): safetensors_file = file.split("/")[-1] break if not safetensors_file: safetensors_file = "pytorch_lora_weights.safetensors" return split_link[1], safetensors_file, trigger_word except Exception as e: raise Exception(f"Error loading LoRA: {e}") else: raise Exception("Invalid HuggingFace repository format") def load_custom_lora(link): """Load custom LoRA from user input""" if not link: return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### Click on a LoRA in the gallery to select it", None try: repo_name, weights_file, trigger_word = get_huggingface_lora(link) card = f'''
Loaded custom LoRA:

{repo_name}

{"Using: "+trigger_word+" as trigger word" if trigger_word else "No trigger word found"}
''' custom_lora_data = { "repo": link, "weights": weights_file, "trigger_word": trigger_word } return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"Custom: {repo_name}", None except Exception as e: return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### Click on a LoRA in the gallery to select it", None def remove_custom_lora(): """Remove custom LoRA""" return "", gr.update(visible=False), gr.update(visible=False), None, None def classify_gallery(flux_loras): """Sort gallery by likes""" sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True) return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.75, flux_loras=None, progress=gr.Progress(track_tqdm=True)): """Wrapper function to handle state serialization""" return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress) @spaces.GPU def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)): """Generate image with selected LoRA""" global current_lora, pipe # Check if input image is provided if input_image is None: gr.Warning("Please upload an image first!") return None, seed, gr.update(visible=False) if randomize_seed: seed = random.randint(0, MAX_SEED) # Determine which LoRA to use lora_to_use = None if custom_lora: lora_to_use = custom_lora elif selected_index is not None and flux_loras and selected_index < len(flux_loras): lora_to_use = flux_loras[selected_index] print(f"Loaded {len(flux_loras)} LoRAs from JSON") # Load LoRA if needed if lora_to_use and lora_to_use != current_lora: try: # Unload current LoRA if current_lora: pipe.unload_lora_weights() # Load new LoRA lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"]) if lora_path: pipe.load_lora_weights(lora_path, adapter_name="selected_lora") pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale]) print(f"loaded: {lora_path} with scale {lora_scale}") current_lora = lora_to_use except Exception as e: print(f"Error loading LoRA: {e}") # Continue without LoRA else: print(f"using already loaded lora: {lora_to_use}") input_image = input_image.convert("RGB") # Check if LoRA is selected if lora_to_use is None: gr.Warning("Please select a LoRA style from the gallery first!") return None, seed, gr.update(visible=False) # Add trigger word to prompt trigger_word = lora_to_use.get("trigger_word", "") if trigger_word == ", How2Draw": prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features" elif trigger_word == ", video game screenshot in the style of THSMS": prompt = f"create a video game screenshot in the style of THSMS with the person from the photo, {prompt}. maintain the facial identity of the person and general features" else: prompt = f"convert the style of this portrait photo to {trigger_word} while maintaining the identity of the person. {prompt}. Make sure to maintain the person's facial identity and features, while still changing the overall style to {trigger_word}." try: image = pipe( image=input_image, prompt=prompt, guidance_scale=guidance_scale, generator=torch.Generator().manual_seed(seed), ).images[0] return image, seed, gr.update(visible=True) except Exception as e: print(f"Error during inference: {e}") return None, seed, gr.update(visible=False) # CSS styling with beautiful gradient pastel design css = """ /* Global background and container styling */ .gradio-container { background: linear-gradient(135deg, #ffeef8 0%, #e6f3ff 25%, #fff4e6 50%, #f0e6ff 75%, #e6fff9 100%); font-family: 'Inter', sans-serif; } /* Main app container */ #main_app { display: flex; gap: 24px; padding: 20px; background: rgba(255, 255, 255, 0.85); backdrop-filter: blur(20px); border-radius: 24px; box-shadow: 0 10px 40px rgba(0, 0, 0, 0.08); } /* Box column styling */ #box_column { min-width: 400px; } /* Gallery box with glassmorphism */ #gallery_box { background: linear-gradient(135deg, rgba(255, 255, 255, 0.9) 0%, rgba(240, 248, 255, 0.9) 100%); border-radius: 20px; padding: 20px; box-shadow: 0 8px 32px rgba(135, 206, 250, 0.2); border: 1px solid rgba(255, 255, 255, 0.8); } /* Input image styling */ .image-container { border-radius: 16px; overflow: hidden; box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1); } /* Gallery styling */ #gallery { overflow-y: scroll !important; max-height: 400px; padding: 12px; background: rgba(255, 255, 255, 0.5); border-radius: 16px; scrollbar-width: thin; scrollbar-color: #ddd6fe #f5f3ff; } #gallery::-webkit-scrollbar { width: 8px; } #gallery::-webkit-scrollbar-track { background: #f5f3ff; border-radius: 10px; } #gallery::-webkit-scrollbar-thumb { background: linear-gradient(180deg, #c7d2fe 0%, #ddd6fe 100%); border-radius: 10px; } /* Selected LoRA text */ #selected_lora { background: linear-gradient(135deg, #818cf8 0%, #a78bfa 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text; font-weight: 700; font-size: 18px; text-align: center; padding: 12px; margin-bottom: 16px; } /* Prompt input field */ #prompt { flex-grow: 1; border: 2px solid transparent; background: linear-gradient(white, white) padding-box, linear-gradient(135deg, #a5b4fc 0%, #e9d5ff 100%) border-box; border-radius: 12px; padding: 12px 16px; font-size: 16px; transition: all 0.3s ease; } #prompt:focus { box-shadow: 0 0 0 4px rgba(165, 180, 252, 0.25); } /* Run button with animated gradient */ #run_button { background: linear-gradient(135deg, #a78bfa 0%, #818cf8 25%, #60a5fa 50%, #34d399 75%, #fbbf24 100%); background-size: 200% 200%; animation: gradient-shift 3s ease infinite; color: white; border: none; padding: 12px 32px; border-radius: 12px; font-weight: 600; font-size: 16px; cursor: pointer; transition: all 0.3s ease; box-shadow: 0 4px 20px rgba(167, 139, 250, 0.4); } #run_button:hover { transform: translateY(-2px); box-shadow: 0 6px 30px rgba(167, 139, 250, 0.6); } @keyframes gradient-shift { 0% { background-position: 0% 50%; } 50% { background-position: 100% 50%; } 100% { background-position: 0% 50%; } } /* Custom LoRA card */ .custom_lora_card { background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%); border: 1px solid #fcd34d; border-radius: 12px; padding: 16px; margin: 12px 0; box-shadow: 0 4px 12px rgba(251, 191, 36, 0.2); } /* Result image container */ .output-image { border-radius: 16px; overflow: hidden; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.12); margin-top: 20px; } /* Accordion styling */ .accordion { background: rgba(249, 250, 251, 0.9); border-radius: 12px; border: 1px solid rgba(229, 231, 235, 0.8); margin-top: 16px; } /* Slider styling */ .slider-container { padding: 8px 0; } input[type="range"] { background: linear-gradient(to right, #e0e7ff 0%, #c7d2fe 100%); border-radius: 8px; height: 6px; } /* Reuse button */ button:not(#run_button) { background: linear-gradient(135deg, #f0abfc 0%, #c084fc 100%); color: white; border: none; padding: 8px 20px; border-radius: 8px; font-weight: 500; cursor: pointer; transition: all 0.3s ease; } button:not(#run_button):hover { transform: translateY(-1px); box-shadow: 0 4px 16px rgba(192, 132, 252, 0.4); } /* Title styling */ h1 { background: linear-gradient(135deg, #6366f1 0%, #a855f7 25%, #ec4899 50%, #f43f5e 75%, #f59e0b 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text; text-align: center; font-size: 3.5rem; font-weight: 800; margin-bottom: 8px; text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1); } h1 small { display: block; background: linear-gradient(135deg, #94a3b8 0%, #64748b 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text; font-size: 1rem; font-weight: 500; margin-top: 8px; } /* Checkbox styling */ input[type="checkbox"] { accent-color: #8b5cf6; } /* Label styling */ label { color: #4b5563; font-weight: 500; } /* Group containers */ .gr-group { background: rgba(255, 255, 255, 0.7); border-radius: 16px; padding: 20px; border: 1px solid rgba(255, 255, 255, 0.9); box-shadow: 0 4px 16px rgba(0, 0, 0, 0.05); } """ # Create Gradio interface with gr.Blocks(css=css) as demo: gr_flux_loras = gr.State(value=flux_loras_raw) title = gr.HTML( """

✨ Flux-Kontext FaceLORA Transform your portraits with AI-powered style transfer 🎨

""", ) selected_state = gr.State(value=None) custom_loaded_lora = gr.State(value=None) with gr.Row(elem_id="main_app"): with gr.Column(scale=4, elem_id="box_column"): with gr.Group(elem_id="gallery_box"): input_image = gr.Image(label="Upload a picture of yourself", type="pil", height=300) gallery = gr.Gallery( label="Pick a LoRA", allow_preview=False, columns=3, elem_id="gallery", show_share_button=False, height=400 ) custom_model = gr.Textbox( label="Or enter a custom HuggingFace FLUX LoRA", placeholder="e.g., username/lora-name", visible=False ) custom_model_card = gr.HTML(visible=False) custom_model_button = gr.Button("Remove custom LoRA", visible=False) with gr.Column(scale=5): with gr.Row(): prompt = gr.Textbox( label="Editing Prompt", show_label=False, lines=1, max_lines=1, placeholder="optional description, e.g. 'a man with glasses and a beard'", elem_id="prompt" ) run_button = gr.Button("Generate ✨", elem_id="run_button") result = gr.Image(label="Generated Image", interactive=False) reuse_button = gr.Button("🔄 Reuse this image", visible=False) with gr.Accordion("Advanced Settings", open=False): lora_scale = gr.Slider( label="LoRA Scale", minimum=0, maximum=2, step=0.1, value=1.5, info="Controls the strength of the LoRA effect" ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=10, step=0.1, value=2.5, ) prompt_title = gr.Markdown( value="### Click on a LoRA in the gallery to select it", visible=True, elem_id="selected_lora", ) # Event handlers custom_model.input( fn=load_custom_lora, inputs=[custom_model], outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state], ) custom_model_button.click( fn=remove_custom_lora, outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state] ) gallery.select( fn=update_selection, inputs=[gr_flux_loras], outputs=[prompt_title, prompt, selected_state], show_progress=False ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer_with_lora_wrapper, inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras], outputs=[result, seed, reuse_button] ) reuse_button.click( fn=lambda image: image, inputs=[result], outputs=[input_image] ) # Initialize gallery demo.load( fn=classify_gallery, inputs=[gr_flux_loras], outputs=[gallery, gr_flux_loras] ) demo.queue(default_concurrency_limit=None) demo.launch()