Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -21,7 +21,7 @@ pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev
|
|
21 |
# Load LoRA data
|
22 |
flux_loras_raw = [
|
23 |
{
|
24 |
-
"image": "examples/1.
|
25 |
"title": "Studio Ghibli",
|
26 |
"repo": "openfree/flux-chatgpt-ghibli-lora",
|
27 |
"trigger_word": "ghibli",
|
@@ -29,7 +29,7 @@ flux_loras_raw = [
|
|
29 |
"likes": 0
|
30 |
},
|
31 |
{
|
32 |
-
"image": "examples/2.
|
33 |
"title": "Winslow Homer",
|
34 |
"repo": "openfree/winslow-homer",
|
35 |
"trigger_word": "homer",
|
@@ -37,7 +37,7 @@ flux_loras_raw = [
|
|
37 |
"likes": 0
|
38 |
},
|
39 |
{
|
40 |
-
"image": "examples/3.
|
41 |
"title": "Van Gogh",
|
42 |
"repo": "openfree/van-gogh",
|
43 |
"trigger_word": "gogh",
|
@@ -45,7 +45,7 @@ flux_loras_raw = [
|
|
45 |
"likes": 0
|
46 |
},
|
47 |
{
|
48 |
-
"image": "examples/4.
|
49 |
"title": "Paul CΓ©zanne",
|
50 |
"repo": "openfree/paul-cezanne",
|
51 |
"trigger_word": "Cezanne",
|
@@ -53,7 +53,7 @@ flux_loras_raw = [
|
|
53 |
"likes": 0
|
54 |
},
|
55 |
{
|
56 |
-
"image": "examples/5.
|
57 |
"title": "Renoir",
|
58 |
"repo": "openfree/pierre-auguste-renoir",
|
59 |
"trigger_word": "Renoir",
|
@@ -61,7 +61,7 @@ flux_loras_raw = [
|
|
61 |
"likes": 0
|
62 |
},
|
63 |
{
|
64 |
-
"image": "examples/6.
|
65 |
"title": "Claude Monet",
|
66 |
"repo": "openfree/claude-monet",
|
67 |
"trigger_word": "claude monet",
|
@@ -69,7 +69,7 @@ flux_loras_raw = [
|
|
69 |
"likes": 0
|
70 |
},
|
71 |
{
|
72 |
-
"image": "examples/7.
|
73 |
"title": "Fantasy Art",
|
74 |
"repo": "openfree/myt-flux-fantasy",
|
75 |
"trigger_word": "fantasy",
|
@@ -227,36 +227,783 @@ def classify_gallery(flux_loras):
|
|
227 |
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
|
228 |
gallery_items = []
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
}
|
240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
for item in sorted_gallery:
|
242 |
if "image" in item and "title" in item:
|
243 |
image_url = item["image"]
|
244 |
title = item["title"]
|
245 |
|
246 |
-
#
|
247 |
-
if isinstance(image_url, str) and
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
if not gallery_items:
|
254 |
-
print("No gallery items found
|
255 |
return [], sorted_gallery
|
256 |
|
|
|
257 |
return gallery_items, sorted_gallery
|
258 |
except Exception as e:
|
259 |
print(f"Error in classify_gallery: {e}")
|
|
|
|
|
260 |
return [], []
|
261 |
|
262 |
def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
|
@@ -707,4 +1454,4 @@ with gr.Blocks(css=css) as demo:
|
|
707 |
)
|
708 |
|
709 |
demo.queue(default_concurrency_limit=None)
|
710 |
-
demo.launch()
|
|
|
21 |
# Load LoRA data
|
22 |
flux_loras_raw = [
|
23 |
{
|
24 |
+
"image": "examples/1.png",
|
25 |
"title": "Studio Ghibli",
|
26 |
"repo": "openfree/flux-chatgpt-ghibli-lora",
|
27 |
"trigger_word": "ghibli",
|
|
|
29 |
"likes": 0
|
30 |
},
|
31 |
{
|
32 |
+
"image": "examples/2.png",
|
33 |
"title": "Winslow Homer",
|
34 |
"repo": "openfree/winslow-homer",
|
35 |
"trigger_word": "homer",
|
|
|
37 |
"likes": 0
|
38 |
},
|
39 |
{
|
40 |
+
"image": "examples/3.png",
|
41 |
"title": "Van Gogh",
|
42 |
"repo": "openfree/van-gogh",
|
43 |
"trigger_word": "gogh",
|
|
|
45 |
"likes": 0
|
46 |
},
|
47 |
{
|
48 |
+
"image": "examples/4.png",
|
49 |
"title": "Paul CΓ©zanne",
|
50 |
"repo": "openfree/paul-cezanne",
|
51 |
"trigger_word": "Cezanne",
|
|
|
53 |
"likes": 0
|
54 |
},
|
55 |
{
|
56 |
+
"image": "examples/5.png",
|
57 |
"title": "Renoir",
|
58 |
"repo": "openfree/pierre-auguste-renoir",
|
59 |
"trigger_word": "Renoir",
|
|
|
61 |
"likes": 0
|
62 |
},
|
63 |
{
|
64 |
+
"image": "examples/6.png",
|
65 |
"title": "Claude Monet",
|
66 |
"repo": "openfree/claude-monet",
|
67 |
"trigger_word": "claude monet",
|
|
|
69 |
"likes": 0
|
70 |
},
|
71 |
{
|
72 |
+
"image": "examples/7.png",
|
73 |
"title": "Fantasy Art",
|
74 |
"repo": "openfree/myt-flux-fantasy",
|
75 |
"trigger_word": "fantasy",
|
|
|
227 |
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
|
228 |
gallery_items = []
|
229 |
|
230 |
+
for item in sorted_gallery:
|
231 |
+
if "image" in item and "title" in item:
|
232 |
+
image_url = item["image"]
|
233 |
+
title = item["title"]
|
234 |
+
|
235 |
+
# Try to load local images with PIL
|
236 |
+
if isinstance(image_url, str) and image_url.startswith("examples/"):
|
237 |
+
try:
|
238 |
+
import os
|
239 |
+
# Try different possible paths
|
240 |
+
possible_paths = [
|
241 |
+
image_url,
|
242 |
+
os.path.join(os.getcwd(), image_url),
|
243 |
+
f"/home/user/app/{image_url}"
|
244 |
+
]
|
245 |
+
|
246 |
+
image_loaded = False
|
247 |
+
for path in possible_paths:
|
248 |
+
if os.path.exists(path):
|
249 |
+
try:
|
250 |
+
pil_image = Image.open(path)
|
251 |
+
gallery_items.append((pil_image, title))
|
252 |
+
image_loaded = True
|
253 |
+
print(f"β Successfully loaded image from: {path}")
|
254 |
+
break
|
255 |
+
except Exception as e:
|
256 |
+
print(f"Failed to open image at {path}: {e}")
|
257 |
+
|
258 |
+
if not image_loaded:
|
259 |
+
print(f"β Could not load image: {image_url}")
|
260 |
+
# Use the original path as fallback
|
261 |
+
gallery_items.append((image_url, title))
|
262 |
+
except Exception as e:
|
263 |
+
print(f"Error processing image {image_url}: {e}")
|
264 |
+
gallery_items.append((image_url, title))
|
265 |
+
else:
|
266 |
+
# For URLs or other paths, use as-is
|
267 |
+
gallery_items.append((image_url, title))
|
268 |
+
|
269 |
+
if not gallery_items:
|
270 |
+
print("No gallery items found")
|
271 |
+
return [], sorted_gallery
|
272 |
+
|
273 |
+
print(f"Gallery loaded with {len(gallery_items)} items")
|
274 |
+
return gallery_items, sorted_gallery
|
275 |
+
except Exception as e:
|
276 |
+
print(f"Error in classify_gallery: {e}")
|
277 |
+
import traceback
|
278 |
+
traceback.print_exc()
|
279 |
+
return [], []
|
280 |
+
|
281 |
+
def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
|
282 |
+
"""Wrapper function to handle state serialization"""
|
283 |
+
return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress)
|
284 |
+
|
285 |
+
@spaces.GPU
|
286 |
+
def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
|
287 |
+
"""Generate image with selected LoRA"""
|
288 |
+
global current_lora, pipe
|
289 |
+
|
290 |
+
# Check if input image is provided
|
291 |
+
if input_image is None:
|
292 |
+
gr.Warning("Please upload your portrait photo first! πΈ")
|
293 |
+
return None, seed, gr.update(visible=False)
|
294 |
+
|
295 |
+
if randomize_seed:
|
296 |
+
seed = random.randint(0, MAX_SEED)
|
297 |
+
|
298 |
+
# Determine which LoRA to use
|
299 |
+
lora_to_use = None
|
300 |
+
if custom_lora:
|
301 |
+
lora_to_use = custom_lora
|
302 |
+
elif selected_index is not None and flux_loras and selected_index < len(flux_loras):
|
303 |
+
lora_to_use = flux_loras[selected_index]
|
304 |
+
# Load LoRA if needed
|
305 |
+
if lora_to_use and lora_to_use != current_lora:
|
306 |
+
try:
|
307 |
+
# Unload current LoRA
|
308 |
+
if current_lora:
|
309 |
+
pipe.unload_lora_weights()
|
310 |
+
print(f"Unloaded previous LoRA")
|
311 |
+
|
312 |
+
# Load new LoRA
|
313 |
+
repo_id = lora_to_use.get("repo", "unknown")
|
314 |
+
weights_file = lora_to_use.get("weights", "pytorch_lora_weights.safetensors")
|
315 |
+
print(f"Loading LoRA: {repo_id} with weights: {weights_file}")
|
316 |
+
|
317 |
+
lora_path = load_lora_weights(repo_id, weights_file)
|
318 |
+
if lora_path:
|
319 |
+
pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
|
320 |
+
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
|
321 |
+
print(f"Successfully loaded: {lora_path} with scale {lora_scale}")
|
322 |
+
current_lora = lora_to_use
|
323 |
+
else:
|
324 |
+
print(f"Failed to load LoRA from {repo_id}")
|
325 |
+
gr.Warning(f"Failed to load {lora_to_use.get('title', 'style')}. Please try a different art style.")
|
326 |
+
return None, seed, gr.update(visible=False)
|
327 |
+
|
328 |
+
except Exception as e:
|
329 |
+
print(f"Error loading LoRA: {e}")
|
330 |
+
# Continue without LoRA
|
331 |
+
else:
|
332 |
+
if lora_to_use:
|
333 |
+
print(f"Using already loaded LoRA: {lora_to_use.get('repo', 'unknown')}")
|
334 |
+
|
335 |
+
try:
|
336 |
+
# Convert image to RGB
|
337 |
+
input_image = input_image.convert("RGB")
|
338 |
+
except Exception as e:
|
339 |
+
print(f"Error processing image: {e}")
|
340 |
+
gr.Warning("Error processing the uploaded image. Please try a different photo. πΈ")
|
341 |
+
return None, seed, gr.update(visible=False)
|
342 |
+
|
343 |
+
# Check if LoRA is selected
|
344 |
+
if lora_to_use is None:
|
345 |
+
gr.Warning("Please select an art style from the gallery first! π¨")
|
346 |
+
return None, seed, gr.update(visible=False)
|
347 |
+
|
348 |
+
# Add trigger word to prompt
|
349 |
+
trigger_word = lora_to_use.get("trigger_word", "")
|
350 |
+
|
351 |
+
# Special handling for different art styles
|
352 |
+
if trigger_word == "ghibli":
|
353 |
+
prompt = f"Create a Studio Ghibli anime style portrait of the person in the photo, {prompt}. Maintain the facial identity while transforming into whimsical anime art style."
|
354 |
+
elif trigger_word == "homer":
|
355 |
+
prompt = f"Paint the person in Winslow Homer's American realist style, {prompt}. Keep facial features while applying watercolor and marine art techniques."
|
356 |
+
elif trigger_word == "gogh":
|
357 |
+
prompt = f"Transform the portrait into Van Gogh's post-impressionist style with swirling brushstrokes, {prompt}. Maintain facial identity with expressive colors."
|
358 |
+
elif trigger_word == "Cezanne":
|
359 |
+
prompt = f"Render the person in Paul CΓ©zanne's geometric post-impressionist style, {prompt}. Keep facial structure while applying structured brushwork."
|
360 |
+
elif trigger_word == "Renoir":
|
361 |
+
prompt = f"Paint the portrait in Pierre-Auguste Renoir's impressionist style with soft light, {prompt}. Maintain identity with luminous skin tones."
|
362 |
+
elif trigger_word == "claude monet":
|
363 |
+
prompt = f"Create an impressionist portrait in Claude Monet's style with visible brushstrokes, {prompt}. Keep facial features while using light and color."
|
364 |
+
elif trigger_word == "fantasy":
|
365 |
+
prompt = f"Transform into an epic fantasy character portrait, {prompt}. Maintain facial identity while adding magical and fantastical elements."
|
366 |
+
elif trigger_word == ", How2Draw":
|
367 |
+
prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features"
|
368 |
+
elif trigger_word == ", video game screenshot in the style of THSMS":
|
369 |
+
prompt = f"create a video game screenshot in the style of THSMS with the person from the photo, {prompt}. maintain the facial identity of the person and general features"
|
370 |
+
else:
|
371 |
+
prompt = f"convert the style of this portrait photo to {trigger_word} while maintaining the identity of the person. {prompt}. Make sure to maintain the person's facial identity and features, while still changing the overall style to {trigger_word}."
|
372 |
+
|
373 |
+
try:
|
374 |
+
image = pipe(
|
375 |
+
image=input_image,
|
376 |
+
prompt=prompt,
|
377 |
+
guidance_scale=guidance_scale,
|
378 |
+
generator=torch.Generator().manual_seed(seed),
|
379 |
+
).images[0]
|
380 |
+
|
381 |
+
return image, seed, gr.update(visible=True)
|
382 |
+
|
383 |
+
except Exception as e:
|
384 |
+
print(f"Error during inference: {e}")
|
385 |
+
return None, seed, gr.update(visible=False)
|
386 |
+
|
387 |
+
# CSS styling with beautiful gradient pastel design
|
388 |
+
css = """
|
389 |
+
/* Global background and container styling */
|
390 |
+
.gradio-container {
|
391 |
+
background: linear-gradient(135deg, #ffeef8 0%, #e6f3ff 25%, #fff4e6 50%, #f0e6ff 75%, #e6fff9 100%);
|
392 |
+
font-family: 'Inter', sans-serif;
|
393 |
+
}
|
394 |
+
|
395 |
+
/* Main app container */
|
396 |
+
#main_app {
|
397 |
+
display: flex;
|
398 |
+
gap: 24px;
|
399 |
+
padding: 20px;
|
400 |
+
background: rgba(255, 255, 255, 0.85);
|
401 |
+
backdrop-filter: blur(20px);
|
402 |
+
border-radius: 24px;
|
403 |
+
box-shadow: 0 10px 40px rgba(0, 0, 0, 0.08);
|
404 |
+
}
|
405 |
+
|
406 |
+
/* Box column styling */
|
407 |
+
#box_column {
|
408 |
+
min-width: 400px;
|
409 |
+
}
|
410 |
+
|
411 |
+
/* Gallery box with glassmorphism */
|
412 |
+
#gallery_box {
|
413 |
+
background: linear-gradient(135deg, rgba(255, 255, 255, 0.9) 0%, rgba(240, 248, 255, 0.9) 100%);
|
414 |
+
border-radius: 20px;
|
415 |
+
padding: 20px;
|
416 |
+
box-shadow: 0 8px 32px rgba(135, 206, 250, 0.2);
|
417 |
+
border: 1px solid rgba(255, 255, 255, 0.8);
|
418 |
+
}
|
419 |
+
|
420 |
+
/* Input image styling */
|
421 |
+
.image-container {
|
422 |
+
border-radius: 16px;
|
423 |
+
overflow: hidden;
|
424 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
|
425 |
+
}
|
426 |
+
|
427 |
+
/* Gallery styling */
|
428 |
+
#gallery {
|
429 |
+
overflow-y: scroll !important;
|
430 |
+
max-height: 400px;
|
431 |
+
padding: 12px;
|
432 |
+
background: rgba(255, 255, 255, 0.5);
|
433 |
+
border-radius: 16px;
|
434 |
+
scrollbar-width: thin;
|
435 |
+
scrollbar-color: #ddd6fe #f5f3ff;
|
436 |
+
}
|
437 |
+
|
438 |
+
#gallery::-webkit-scrollbar {
|
439 |
+
width: 8px;
|
440 |
+
}
|
441 |
+
|
442 |
+
#gallery::-webkit-scrollbar-track {
|
443 |
+
background: #f5f3ff;
|
444 |
+
border-radius: 10px;
|
445 |
+
}
|
446 |
+
|
447 |
+
#gallery::-webkit-scrollbar-thumb {
|
448 |
+
background: linear-gradient(180deg, #c7d2fe 0%, #ddd6fe 100%);
|
449 |
+
border-radius: 10px;
|
450 |
+
}
|
451 |
+
|
452 |
+
/* Selected LoRA text */
|
453 |
+
#selected_lora {
|
454 |
+
background: linear-gradient(135deg, #818cf8 0%, #a78bfa 100%);
|
455 |
+
-webkit-background-clip: text;
|
456 |
+
-webkit-text-fill-color: transparent;
|
457 |
+
background-clip: text;
|
458 |
+
font-weight: 700;
|
459 |
+
font-size: 18px;
|
460 |
+
text-align: center;
|
461 |
+
padding: 12px;
|
462 |
+
margin-bottom: 16px;
|
463 |
+
}
|
464 |
+
|
465 |
+
/* Prompt input field */
|
466 |
+
#prompt {
|
467 |
+
flex-grow: 1;
|
468 |
+
border: 2px solid transparent;
|
469 |
+
background: linear-gradient(white, white) padding-box,
|
470 |
+
linear-gradient(135deg, #a5b4fc 0%, #e9d5ff 100%) border-box;
|
471 |
+
border-radius: 12px;
|
472 |
+
padding: 12px 16px;
|
473 |
+
font-size: 16px;
|
474 |
+
transition: all 0.3s ease;
|
475 |
+
}
|
476 |
+
|
477 |
+
#prompt:focus {
|
478 |
+
box-shadow: 0 0 0 4px rgba(165, 180, 252, 0.25);
|
479 |
+
}
|
480 |
+
|
481 |
+
/* Run button with animated gradient */
|
482 |
+
#run_button {
|
483 |
+
background: linear-gradient(135deg, #a78bfa 0%, #818cf8 25%, #60a5fa 50%, #34d399 75%, #fbbf24 100%);
|
484 |
+
background-size: 200% 200%;
|
485 |
+
animation: gradient-shift 3s ease infinite;
|
486 |
+
color: white;
|
487 |
+
border: none;
|
488 |
+
padding: 12px 32px;
|
489 |
+
border-radius: 12px;
|
490 |
+
font-weight: 600;
|
491 |
+
font-size: 16px;
|
492 |
+
cursor: pointer;
|
493 |
+
transition: all 0.3s ease;
|
494 |
+
box-shadow: 0 4px 20px rgba(167, 139, 250, 0.4);
|
495 |
+
}
|
496 |
+
|
497 |
+
#run_button:hover {
|
498 |
+
transform: translateY(-2px);
|
499 |
+
box-shadow: 0 6px 30px rgba(167, 139, 250, 0.6);
|
500 |
+
}
|
501 |
+
|
502 |
+
@keyframes gradient-shift {
|
503 |
+
0% { background-position: 0% 50%; }
|
504 |
+
50% { background-position: 100% 50%; }
|
505 |
+
100% { background-position: 0% 50%; }
|
506 |
+
}
|
507 |
+
|
508 |
+
/* Custom LoRA card */
|
509 |
+
.custom_lora_card {
|
510 |
+
background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
|
511 |
+
border: 1px solid #fcd34d;
|
512 |
+
border-radius: 12px;
|
513 |
+
padding: 16px;
|
514 |
+
margin: 12px 0;
|
515 |
+
box-shadow: 0 4px 12px rgba(251, 191, 36, 0.2);
|
516 |
+
}
|
517 |
+
|
518 |
+
/* Result image container */
|
519 |
+
.output-image {
|
520 |
+
border-radius: 16px;
|
521 |
+
overflow: hidden;
|
522 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.12);
|
523 |
+
margin-top: 20px;
|
524 |
+
}
|
525 |
+
|
526 |
+
/* Accordion styling */
|
527 |
+
.accordion {
|
528 |
+
background: rgba(249, 250, 251, 0.9);
|
529 |
+
border-radius: 12px;
|
530 |
+
border: 1px solid rgba(229, 231, 235, 0.8);
|
531 |
+
margin-top: 16px;
|
532 |
+
}
|
533 |
+
|
534 |
+
/* Slider styling */
|
535 |
+
.slider-container {
|
536 |
+
padding: 8px 0;
|
537 |
+
}
|
538 |
+
|
539 |
+
input[type="range"] {
|
540 |
+
background: linear-gradient(to right, #e0e7ff 0%, #c7d2fe 100%);
|
541 |
+
border-radius: 8px;
|
542 |
+
height: 6px;
|
543 |
+
}
|
544 |
+
|
545 |
+
/* Reuse button */
|
546 |
+
button:not(#run_button) {
|
547 |
+
background: linear-gradient(135deg, #f0abfc 0%, #c084fc 100%);
|
548 |
+
color: white;
|
549 |
+
border: none;
|
550 |
+
padding: 8px 20px;
|
551 |
+
border-radius: 8px;
|
552 |
+
font-weight: 500;
|
553 |
+
cursor: pointer;
|
554 |
+
transition: all 0.3s ease;
|
555 |
+
}
|
556 |
+
|
557 |
+
button:not(#run_button):hover {
|
558 |
+
transform: translateY(-1px);
|
559 |
+
box-shadow: 0 4px 16px rgba(192, 132, 252, 0.4);
|
560 |
+
}
|
561 |
+
|
562 |
+
/* Title styling */
|
563 |
+
h1 {
|
564 |
+
background: linear-gradient(135deg, #6366f1 0%, #a855f7 25%, #ec4899 50%, #f43f5e 75%, #f59e0b 100%);
|
565 |
+
-webkit-background-clip: text;
|
566 |
+
-webkit-text-fill-color: transparent;
|
567 |
+
background-clip: text;
|
568 |
+
text-align: center;
|
569 |
+
font-size: 3.5rem;
|
570 |
+
font-weight: 800;
|
571 |
+
margin-bottom: 8px;
|
572 |
+
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1);
|
573 |
+
}
|
574 |
+
|
575 |
+
h1 small {
|
576 |
+
display: block;
|
577 |
+
background: linear-gradient(135deg, #94a3b8 0%, #64748b 100%);
|
578 |
+
-webkit-background-clip: text;
|
579 |
+
-webkit-text-fill-color: transparent;
|
580 |
+
background-clip: text;
|
581 |
+
font-size: 1rem;
|
582 |
+
font-weight: 500;
|
583 |
+
margin-top: 8px;
|
584 |
+
}
|
585 |
+
|
586 |
+
/* Checkbox styling */
|
587 |
+
input[type="checkbox"] {
|
588 |
+
accent-color: #8b5cf6;
|
589 |
+
}
|
590 |
+
|
591 |
+
/* Label styling */
|
592 |
+
label {
|
593 |
+
color: #4b5563;
|
594 |
+
font-weight: 500;
|
595 |
+
}
|
596 |
+
|
597 |
+
/* Group containers */
|
598 |
+
.gr-group {
|
599 |
+
background: rgba(255, 255, 255, 0.7);
|
600 |
+
border-radius: 16px;
|
601 |
+
padding: 20px;
|
602 |
+
border: 1px solid rgba(255, 255, 255, 0.9);
|
603 |
+
box-shadow: 0 4px 16px rgba(0, 0, 0, 0.05);
|
604 |
+
}
|
605 |
+
"""
|
606 |
+
|
607 |
+
# Create Gradio interface
|
608 |
+
with gr.Blocks(css=css) as demo:
|
609 |
+
gr_flux_loras = gr.State(value=flux_loras_raw)
|
610 |
+
|
611 |
+
title = gr.HTML(
|
612 |
+
"""<h1>β¨ Flux-Kontext FaceLORA
|
613 |
+
<small>Transform your portraits with AI-powered style transfer π¨</small></h1>""",
|
614 |
+
)
|
615 |
+
|
616 |
+
selected_state = gr.State(value=None)
|
617 |
+
custom_loaded_lora = gr.State(value=None)
|
618 |
+
|
619 |
+
with gr.Row(elem_id="main_app"):
|
620 |
+
with gr.Column(scale=4, elem_id="box_column"):
|
621 |
+
with gr.Group(elem_id="gallery_box"):
|
622 |
+
input_image = gr.Image(label="Upload your portrait photo πΈ", type="pil", height=300)
|
623 |
+
|
624 |
+
gallery = gr.Gallery(
|
625 |
+
label="Choose Your Art Style",
|
626 |
+
allow_preview=False,
|
627 |
+
columns=3,
|
628 |
+
elem_id="gallery",
|
629 |
+
show_share_button=False,
|
630 |
+
height=400
|
631 |
+
)
|
632 |
+
|
633 |
+
custom_model = gr.Textbox(
|
634 |
+
label="π Or use a custom LoRA from HuggingFace",
|
635 |
+
placeholder="e.g., username/lora-name",
|
636 |
+
visible=True
|
637 |
+
)
|
638 |
+
custom_model_card = gr.HTML(visible=False)
|
639 |
+
custom_model_button = gr.Button("β Remove custom LoRA", visible=False)
|
640 |
+
|
641 |
+
with gr.Column(scale=5):
|
642 |
+
with gr.Row():
|
643 |
+
prompt = gr.Textbox(
|
644 |
+
label="Additional Details (optional)",
|
645 |
+
show_label=False,
|
646 |
+
lines=1,
|
647 |
+
max_lines=1,
|
648 |
+
placeholder="Describe additional details, e.g., 'wearing a red hat' or 'smiling'",
|
649 |
+
elem_id="prompt"
|
650 |
+
)
|
651 |
+
run_button = gr.Button("Generate β¨", elem_id="run_button")
|
652 |
+
|
653 |
+
result = gr.Image(label="Your Artistic Portrait", interactive=False)
|
654 |
+
reuse_button = gr.Button("π Reuse this image", visible=False)
|
655 |
+
|
656 |
+
with gr.Accordion("βοΈ Advanced Settings", open=False):
|
657 |
+
lora_scale = gr.Slider(
|
658 |
+
label="Style Strength",
|
659 |
+
minimum=0,
|
660 |
+
maximum=2,
|
661 |
+
step=0.1,
|
662 |
+
value=1.0,
|
663 |
+
info="How strongly to apply the art style (1.0 = balanced)"
|
664 |
+
)
|
665 |
+
seed = gr.Slider(
|
666 |
+
label="Random Seed",
|
667 |
+
minimum=0,
|
668 |
+
maximum=MAX_SEED,
|
669 |
+
step=1,
|
670 |
+
value=0,
|
671 |
+
info="Set to 0 for random results"
|
672 |
+
)
|
673 |
+
randomize_seed = gr.Checkbox(label="π² Randomize seed for each generation", value=True)
|
674 |
+
guidance_scale = gr.Slider(
|
675 |
+
label="Image Guidance",
|
676 |
+
minimum=1,
|
677 |
+
maximum=10,
|
678 |
+
step=0.1,
|
679 |
+
value=2.5,
|
680 |
+
info="How closely to follow the input image (lower = more creative)"
|
681 |
+
)
|
682 |
+
|
683 |
+
prompt_title = gr.Markdown(
|
684 |
+
value="### π¨ Select an art style from the gallery",
|
685 |
+
visible=True,
|
686 |
+
elem_id="selected_lora",
|
687 |
+
)
|
688 |
+
|
689 |
+
# Event handlers
|
690 |
+
custom_model.input(
|
691 |
+
fn=load_custom_lora,
|
692 |
+
inputs=[custom_model],
|
693 |
+
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state],
|
694 |
+
)
|
695 |
+
|
696 |
+
custom_model_button.click(
|
697 |
+
fn=remove_custom_lora,
|
698 |
+
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state]
|
699 |
+
)
|
700 |
+
|
701 |
+
gallery.select(
|
702 |
+
fn=update_selection,
|
703 |
+
inputs=[gr_flux_loras],
|
704 |
+
outputs=[prompt_title, prompt, selected_state],
|
705 |
+
show_progress=False
|
706 |
+
)
|
707 |
+
|
708 |
+
gr.on(
|
709 |
+
triggers=[run_button.click, prompt.submit],
|
710 |
+
fn=infer_with_lora_wrapper,
|
711 |
+
inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras],
|
712 |
+
outputs=[result, seed, reuse_button]
|
713 |
+
)
|
714 |
+
|
715 |
+
reuse_button.click(
|
716 |
+
fn=lambda image: image,
|
717 |
+
inputs=[result],
|
718 |
+
outputs=[input_image]
|
719 |
+
)
|
720 |
+
|
721 |
+
# Initialize gallery
|
722 |
+
demo.load(
|
723 |
+
fn=classify_gallery,
|
724 |
+
inputs=[gr_flux_loras],
|
725 |
+
outputs=[gallery, gr_flux_loras]
|
726 |
+
)
|
727 |
+
|
728 |
+
demo.queue(default_concurrency_limit=None)
|
729 |
+
demo.launch(allowed_paths=["examples/"])import gradio as gr
|
730 |
+
import numpy as np
|
731 |
+
import spaces
|
732 |
+
import torch
|
733 |
+
import random
|
734 |
+
import json
|
735 |
+
import os
|
736 |
+
from PIL import Image
|
737 |
+
from diffusers import FluxKontextPipeline
|
738 |
+
from diffusers.utils import load_image
|
739 |
+
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, list_repo_files
|
740 |
+
from safetensors.torch import load_file
|
741 |
+
import requests
|
742 |
+
import re
|
743 |
+
|
744 |
+
# Load Kontext model
|
745 |
+
MAX_SEED = np.iinfo(np.int32).max
|
746 |
+
|
747 |
+
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
748 |
+
|
749 |
+
# Load LoRA data
|
750 |
+
flux_loras_raw = [
|
751 |
+
{
|
752 |
+
"image": "examples/1.png",
|
753 |
+
"title": "Studio Ghibli",
|
754 |
+
"repo": "openfree/flux-chatgpt-ghibli-lora",
|
755 |
+
"trigger_word": "ghibli",
|
756 |
+
"weights": "pytorch_lora_weights.safetensors",
|
757 |
+
"likes": 0
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"image": "examples/2.png",
|
761 |
+
"title": "Winslow Homer",
|
762 |
+
"repo": "openfree/winslow-homer",
|
763 |
+
"trigger_word": "homer",
|
764 |
+
"weights": "pytorch_lora_weights.safetensors",
|
765 |
+
"likes": 0
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"image": "examples/3.png",
|
769 |
+
"title": "Van Gogh",
|
770 |
+
"repo": "openfree/van-gogh",
|
771 |
+
"trigger_word": "gogh",
|
772 |
+
"weights": "pytorch_lora_weights.safetensors",
|
773 |
+
"likes": 0
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"image": "examples/4.png",
|
777 |
+
"title": "Paul CΓ©zanne",
|
778 |
+
"repo": "openfree/paul-cezanne",
|
779 |
+
"trigger_word": "Cezanne",
|
780 |
+
"weights": "pytorch_lora_weights.safetensors",
|
781 |
+
"likes": 0
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"image": "examples/5.png",
|
785 |
+
"title": "Renoir",
|
786 |
+
"repo": "openfree/pierre-auguste-renoir",
|
787 |
+
"trigger_word": "Renoir",
|
788 |
+
"weights": "pytorch_lora_weights.safetensors",
|
789 |
+
"likes": 0
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"image": "examples/6.png",
|
793 |
+
"title": "Claude Monet",
|
794 |
+
"repo": "openfree/claude-monet",
|
795 |
+
"trigger_word": "claude monet",
|
796 |
+
"weights": "pytorch_lora_weights.safetensors",
|
797 |
+
"likes": 0
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"image": "examples/7.png",
|
801 |
+
"title": "Fantasy Art",
|
802 |
+
"repo": "openfree/myt-flux-fantasy",
|
803 |
+
"trigger_word": "fantasy",
|
804 |
+
"weights": "pytorch_lora_weights.safetensors",
|
805 |
+
"likes": 0
|
806 |
+
}
|
807 |
+
]
|
808 |
+
print(f"Loaded {len(flux_loras_raw)} LoRAs")
|
809 |
+
# Global variables for LoRA management
|
810 |
+
current_lora = None
|
811 |
+
lora_cache = {}
|
812 |
+
|
813 |
+
def load_lora_weights(repo_id, weights_filename):
|
814 |
+
"""Load LoRA weights from HuggingFace"""
|
815 |
+
try:
|
816 |
+
# First try with the specified filename
|
817 |
+
try:
|
818 |
+
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
|
819 |
+
if repo_id not in lora_cache:
|
820 |
+
lora_cache[repo_id] = lora_path
|
821 |
+
return lora_path
|
822 |
+
except Exception as e:
|
823 |
+
print(f"Failed to load {weights_filename}, trying to find alternative LoRA files...")
|
824 |
+
|
825 |
+
# If the specified file doesn't exist, try to find any .safetensors file
|
826 |
+
from huggingface_hub import list_repo_files
|
827 |
+
try:
|
828 |
+
files = list_repo_files(repo_id)
|
829 |
+
safetensors_files = [f for f in files if f.endswith(('.safetensors', '.bin')) and 'lora' in f.lower()]
|
830 |
+
|
831 |
+
if not safetensors_files:
|
832 |
+
# Try without 'lora' in filename
|
833 |
+
safetensors_files = [f for f in files if f.endswith('.safetensors')]
|
834 |
+
|
835 |
+
if safetensors_files:
|
836 |
+
# Try the first available file
|
837 |
+
for file in safetensors_files:
|
838 |
+
try:
|
839 |
+
print(f"Trying alternative file: {file}")
|
840 |
+
lora_path = hf_hub_download(repo_id=repo_id, filename=file)
|
841 |
+
if repo_id not in lora_cache:
|
842 |
+
lora_cache[repo_id] = lora_path
|
843 |
+
print(f"Successfully loaded alternative LoRA file: {file}")
|
844 |
+
return lora_path
|
845 |
+
except:
|
846 |
+
continue
|
847 |
+
|
848 |
+
print(f"No suitable LoRA files found in {repo_id}")
|
849 |
+
return None
|
850 |
+
|
851 |
+
except Exception as list_error:
|
852 |
+
print(f"Error listing files in repo {repo_id}: {list_error}")
|
853 |
+
return None
|
854 |
+
|
855 |
+
except Exception as e:
|
856 |
+
print(f"Error loading LoRA from {repo_id}: {e}")
|
857 |
+
return None
|
858 |
+
|
859 |
+
def update_selection(selected_state: gr.SelectData, flux_loras):
|
860 |
+
"""Update UI when a LoRA is selected"""
|
861 |
+
if selected_state.index >= len(flux_loras):
|
862 |
+
return "### No LoRA selected", gr.update(), None
|
863 |
+
|
864 |
+
lora = flux_loras[selected_state.index]
|
865 |
+
lora_title = lora["title"]
|
866 |
+
lora_repo = lora["repo"]
|
867 |
+
trigger_word = lora["trigger_word"]
|
868 |
+
|
869 |
+
# Create a more informative selected text
|
870 |
+
updated_text = f"### π¨ Selected Style: {lora_title}"
|
871 |
+
new_placeholder = f"Describe additional details, e.g., 'wearing a red hat' or 'smiling'"
|
872 |
+
|
873 |
+
return updated_text, gr.update(placeholder=new_placeholder), selected_state.index
|
874 |
+
|
875 |
+
def get_huggingface_lora(link):
|
876 |
+
"""Download LoRA from HuggingFace link"""
|
877 |
+
split_link = link.split("/")
|
878 |
+
if len(split_link) == 2:
|
879 |
+
try:
|
880 |
+
model_card = ModelCard.load(link)
|
881 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
882 |
+
|
883 |
+
# Try to find the correct safetensors file
|
884 |
+
files = list_repo_files(link)
|
885 |
+
safetensors_files = [f for f in files if f.endswith('.safetensors')]
|
886 |
+
|
887 |
+
# Prioritize files with 'lora' in the name
|
888 |
+
lora_files = [f for f in safetensors_files if 'lora' in f.lower()]
|
889 |
+
if lora_files:
|
890 |
+
safetensors_file = lora_files[0]
|
891 |
+
elif safetensors_files:
|
892 |
+
safetensors_file = safetensors_files[0]
|
893 |
+
else:
|
894 |
+
# Try .bin files as fallback
|
895 |
+
bin_files = [f for f in files if f.endswith('.bin') and 'lora' in f.lower()]
|
896 |
+
if bin_files:
|
897 |
+
safetensors_file = bin_files[0]
|
898 |
+
else:
|
899 |
+
safetensors_file = "pytorch_lora_weights.safetensors" # Default fallback
|
900 |
+
|
901 |
+
print(f"Found LoRA file: {safetensors_file} in {link}")
|
902 |
+
return split_link[1], safetensors_file, trigger_word
|
903 |
+
|
904 |
+
except Exception as e:
|
905 |
+
print(f"Error in get_huggingface_lora: {e}")
|
906 |
+
# Try basic detection
|
907 |
+
try:
|
908 |
+
files = list_repo_files(link)
|
909 |
+
safetensors_file = next((f for f in files if f.endswith('.safetensors')), "pytorch_lora_weights.safetensors")
|
910 |
+
return split_link[1], safetensors_file, ""
|
911 |
+
except:
|
912 |
+
raise Exception(f"Error loading LoRA: {e}")
|
913 |
+
else:
|
914 |
+
raise Exception("Invalid HuggingFace repository format")
|
915 |
+
|
916 |
+
def load_custom_lora(link):
|
917 |
+
"""Load custom LoRA from user input"""
|
918 |
+
if not link:
|
919 |
+
return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### π¨ Select an art style from the gallery", None
|
920 |
+
|
921 |
+
try:
|
922 |
+
repo_name, weights_file, trigger_word = get_huggingface_lora(link)
|
923 |
+
|
924 |
+
card = f'''
|
925 |
+
<div class="custom_lora_card">
|
926 |
+
<div style="display: flex; align-items: center; margin-bottom: 12px;">
|
927 |
+
<span style="font-size: 18px; margin-right: 8px;">β
</span>
|
928 |
+
<strong style="font-size: 16px;">Custom LoRA Loaded!</strong>
|
929 |
+
</div>
|
930 |
+
<div style="background: rgba(255, 255, 255, 0.8); padding: 12px; border-radius: 8px;">
|
931 |
+
<h4 style="margin: 0 0 8px 0; color: #333;">{repo_name}</h4>
|
932 |
+
<small style="color: #666;">{"Trigger: <code style='background: #f0f0f0; padding: 2px 6px; border-radius: 4px;'><b>"+trigger_word+"</b></code>" if trigger_word else "No trigger word found"}</small>
|
933 |
+
</div>
|
934 |
+
</div>
|
935 |
+
'''
|
936 |
+
|
937 |
+
custom_lora_data = {
|
938 |
+
"repo": link,
|
939 |
+
"weights": weights_file,
|
940 |
+
"trigger_word": trigger_word
|
941 |
}
|
942 |
|
943 |
+
return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"π¨ Custom Style: {repo_name}", None
|
944 |
+
|
945 |
+
except Exception as e:
|
946 |
+
return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### π¨ Select an art style from the gallery", None
|
947 |
+
|
948 |
+
def remove_custom_lora():
|
949 |
+
"""Remove custom LoRA"""
|
950 |
+
return "", gr.update(visible=False), gr.update(visible=False), None, None
|
951 |
+
|
952 |
+
def classify_gallery(flux_loras):
|
953 |
+
"""Sort gallery by likes"""
|
954 |
+
try:
|
955 |
+
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
|
956 |
+
gallery_items = []
|
957 |
+
|
958 |
for item in sorted_gallery:
|
959 |
if "image" in item and "title" in item:
|
960 |
image_url = item["image"]
|
961 |
title = item["title"]
|
962 |
|
963 |
+
# Try to load local images with PIL
|
964 |
+
if isinstance(image_url, str) and image_url.startswith("examples/"):
|
965 |
+
try:
|
966 |
+
import os
|
967 |
+
# Try different possible paths
|
968 |
+
possible_paths = [
|
969 |
+
image_url,
|
970 |
+
os.path.join(os.getcwd(), image_url),
|
971 |
+
f"/home/user/app/{image_url}"
|
972 |
+
]
|
973 |
+
|
974 |
+
image_loaded = False
|
975 |
+
for path in possible_paths:
|
976 |
+
if os.path.exists(path):
|
977 |
+
try:
|
978 |
+
pil_image = Image.open(path)
|
979 |
+
gallery_items.append((pil_image, title))
|
980 |
+
image_loaded = True
|
981 |
+
print(f"β Successfully loaded image from: {path}")
|
982 |
+
break
|
983 |
+
except Exception as e:
|
984 |
+
print(f"Failed to open image at {path}: {e}")
|
985 |
+
|
986 |
+
if not image_loaded:
|
987 |
+
print(f"β Could not load image: {image_url}")
|
988 |
+
# Use the original path as fallback
|
989 |
+
gallery_items.append((image_url, title))
|
990 |
+
except Exception as e:
|
991 |
+
print(f"Error processing image {image_url}: {e}")
|
992 |
+
gallery_items.append((image_url, title))
|
993 |
+
else:
|
994 |
+
# For URLs or other paths, use as-is
|
995 |
+
gallery_items.append((image_url, title))
|
996 |
|
997 |
if not gallery_items:
|
998 |
+
print("No gallery items found")
|
999 |
return [], sorted_gallery
|
1000 |
|
1001 |
+
print(f"Gallery loaded with {len(gallery_items)} items")
|
1002 |
return gallery_items, sorted_gallery
|
1003 |
except Exception as e:
|
1004 |
print(f"Error in classify_gallery: {e}")
|
1005 |
+
import traceback
|
1006 |
+
traceback.print_exc()
|
1007 |
return [], []
|
1008 |
|
1009 |
def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
|
|
|
1454 |
)
|
1455 |
|
1456 |
demo.queue(default_concurrency_limit=None)
|
1457 |
+
demo.launch(allowed_paths=["examples/"])
|